Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect
In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found includ...
Gespeichert in:
Veröffentlicht in: | Cognitive neurodynamics 2021-04, Vol.15 (2), p.315-347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | Cognitive neurodynamics |
container_volume | 15 |
creator | Wouapi, Marcel Kemayou Fotsin, Bertrand Hilaire Ngouonkadi, Elie Bertrand Megam Kemwoue, Florent Feudjio Njitacke, Zeric Tabekoueng |
description | In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux. |
doi_str_mv | 10.1007/s11571-020-09606-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918680302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtR3HX1BTxIwIuX1qTz1bkIMqgrLAii55BOqmeypJMx6VZHEHwH39AnMWuv48dBckiR-tU_VfVvmvsEPyYYyyeFEC5JizvcYiWwaPmN5pT09YlhpW4e4x6fNHdKucSYi56w280JpT1ngsnT5ssmTfsAn9DgxyVbM_sUkYkmHIovNXCoHKLd5RT95zWZ9rOfTEA2xTmngMaU0bmPbjK57L5__fYmFUARllqCpuQgoCU6yGgy2wizt2gM6SOCcQQ7321ujSYUuHd9nzXvXjx_uzlvL16_fLV5dtFaJtncdlhQBgOx1lBpsRisw8bKkYzWSWKUUgPnvbXA-wEz44DWvTjJnBPGUlD0rHm66u6XYQJnobZugt7nOkk-6GS8_jsT_U5v0wctlaiHVIFH1wI5vV-gzHryxUIIJkJaiu44oR3jSvCKPvwHvUxLrhutlCK96DHFXaW6lbI5lZJhPDZDsL5yV6_u6uqu_umuvpJ-8OcYx5JfdlaArkCpqbiF_Pvv_8j-AKkVtbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918680302</pqid></control><display><type>article</type><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><source>ProQuest Central (Alumni Edition)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</creator><creatorcontrib>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</creatorcontrib><description>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</description><identifier>ISSN: 1871-4080</identifier><identifier>EISSN: 1871-4099</identifier><identifier>DOI: 10.1007/s11571-020-09606-5</identifier><identifier>PMID: 33854647</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Behavior ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bursting ; Bursting strength ; Circuit design ; Cognitive Psychology ; Computer Science ; Electromagnetic induction ; Electromagnetism ; Electronic circuits ; Epilepsy ; Firing pattern ; Hopf bifurcation ; Investigations ; Liapunov exponents ; Magnetic fields ; Magnetic flux ; Nervous system ; Neural networks ; Neurons ; Neurosciences ; Optimal control ; Ordinary differential equations ; Research Article ; Synchronism ; Synchronization</subject><ispartof>Cognitive neurodynamics, 2021-04, Vol.15 (2), p.315-347</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</citedby><cites>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969691/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918680302?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,21387,21388,27923,27924,33529,33530,33743,33744,41487,42556,43658,43804,51318,53790,53792,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33854647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wouapi, Marcel Kemayou</creatorcontrib><creatorcontrib>Fotsin, Bertrand Hilaire</creatorcontrib><creatorcontrib>Ngouonkadi, Elie Bertrand Megam</creatorcontrib><creatorcontrib>Kemwoue, Florent Feudjio</creatorcontrib><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><title>Cognitive neurodynamics</title><addtitle>Cogn Neurodyn</addtitle><addtitle>Cogn Neurodyn</addtitle><description>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</description><subject>Artificial Intelligence</subject><subject>Behavior</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bursting</subject><subject>Bursting strength</subject><subject>Circuit design</subject><subject>Cognitive Psychology</subject><subject>Computer Science</subject><subject>Electromagnetic induction</subject><subject>Electromagnetism</subject><subject>Electronic circuits</subject><subject>Epilepsy</subject><subject>Firing pattern</subject><subject>Hopf bifurcation</subject><subject>Investigations</subject><subject>Liapunov exponents</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Optimal control</subject><subject>Ordinary differential equations</subject><subject>Research Article</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>1871-4080</issn><issn>1871-4099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFDEQxxtR3HX1BTxIwIuX1qTz1bkIMqgrLAii55BOqmeypJMx6VZHEHwH39AnMWuv48dBckiR-tU_VfVvmvsEPyYYyyeFEC5JizvcYiWwaPmN5pT09YlhpW4e4x6fNHdKucSYi56w280JpT1ngsnT5ssmTfsAn9DgxyVbM_sUkYkmHIovNXCoHKLd5RT95zWZ9rOfTEA2xTmngMaU0bmPbjK57L5__fYmFUARllqCpuQgoCU6yGgy2wizt2gM6SOCcQQ7321ujSYUuHd9nzXvXjx_uzlvL16_fLV5dtFaJtncdlhQBgOx1lBpsRisw8bKkYzWSWKUUgPnvbXA-wEz44DWvTjJnBPGUlD0rHm66u6XYQJnobZugt7nOkk-6GS8_jsT_U5v0wctlaiHVIFH1wI5vV-gzHryxUIIJkJaiu44oR3jSvCKPvwHvUxLrhutlCK96DHFXaW6lbI5lZJhPDZDsL5yV6_u6uqu_umuvpJ-8OcYx5JfdlaArkCpqbiF_Pvv_8j-AKkVtbY</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wouapi, Marcel Kemayou</creator><creator>Fotsin, Bertrand Hilaire</creator><creator>Ngouonkadi, Elie Bertrand Megam</creator><creator>Kemwoue, Florent Feudjio</creator><creator>Njitacke, Zeric Tabekoueng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><author>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Behavior</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bursting</topic><topic>Bursting strength</topic><topic>Circuit design</topic><topic>Cognitive Psychology</topic><topic>Computer Science</topic><topic>Electromagnetic induction</topic><topic>Electromagnetism</topic><topic>Electronic circuits</topic><topic>Epilepsy</topic><topic>Firing pattern</topic><topic>Hopf bifurcation</topic><topic>Investigations</topic><topic>Liapunov exponents</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Optimal control</topic><topic>Ordinary differential equations</topic><topic>Research Article</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wouapi, Marcel Kemayou</creatorcontrib><creatorcontrib>Fotsin, Bertrand Hilaire</creatorcontrib><creatorcontrib>Ngouonkadi, Elie Bertrand Megam</creatorcontrib><creatorcontrib>Kemwoue, Florent Feudjio</creatorcontrib><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cognitive neurodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouapi, Marcel Kemayou</au><au>Fotsin, Bertrand Hilaire</au><au>Ngouonkadi, Elie Bertrand Megam</au><au>Kemwoue, Florent Feudjio</au><au>Njitacke, Zeric Tabekoueng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</atitle><jtitle>Cognitive neurodynamics</jtitle><stitle>Cogn Neurodyn</stitle><addtitle>Cogn Neurodyn</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>315</spage><epage>347</epage><pages>315-347</pages><issn>1871-4080</issn><eissn>1871-4099</eissn><abstract>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33854647</pmid><doi>10.1007/s11571-020-09606-5</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1871-4080 |
ispartof | Cognitive neurodynamics, 2021-04, Vol.15 (2), p.315-347 |
issn | 1871-4080 1871-4099 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969691 |
source | ProQuest Central (Alumni Edition); EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Behavior Biochemistry Biomedical and Life Sciences Biomedicine Bursting Bursting strength Circuit design Cognitive Psychology Computer Science Electromagnetic induction Electromagnetism Electronic circuits Epilepsy Firing pattern Hopf bifurcation Investigations Liapunov exponents Magnetic fields Magnetic flux Nervous system Neural networks Neurons Neurosciences Optimal control Ordinary differential equations Research Article Synchronism Synchronization |
title | Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20bifurcation%20analysis%20and%20synchronization%20optimal%20control%20for%20Hindmarsh%E2%80%93Rose%20neuron%20model%20under%20magnetic%20flow%20effect&rft.jtitle=Cognitive%20neurodynamics&rft.au=Wouapi,%20Marcel%20Kemayou&rft.date=2021-04-01&rft.volume=15&rft.issue=2&rft.spage=315&rft.epage=347&rft.pages=315-347&rft.issn=1871-4080&rft.eissn=1871-4099&rft_id=info:doi/10.1007/s11571-020-09606-5&rft_dat=%3Cproquest_pubme%3E2918680302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918680302&rft_id=info:pmid/33854647&rfr_iscdi=true |