Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect

In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2021-04, Vol.15 (2), p.315-347
Hauptverfasser: Wouapi, Marcel Kemayou, Fotsin, Bertrand Hilaire, Ngouonkadi, Elie Bertrand Megam, Kemwoue, Florent Feudjio, Njitacke, Zeric Tabekoueng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 2
container_start_page 315
container_title Cognitive neurodynamics
container_volume 15
creator Wouapi, Marcel Kemayou
Fotsin, Bertrand Hilaire
Ngouonkadi, Elie Bertrand Megam
Kemwoue, Florent Feudjio
Njitacke, Zeric Tabekoueng
description In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.
doi_str_mv 10.1007/s11571-020-09606-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918680302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtR3HX1BTxIwIuX1qTz1bkIMqgrLAii55BOqmeypJMx6VZHEHwH39AnMWuv48dBckiR-tU_VfVvmvsEPyYYyyeFEC5JizvcYiWwaPmN5pT09YlhpW4e4x6fNHdKucSYi56w280JpT1ngsnT5ssmTfsAn9DgxyVbM_sUkYkmHIovNXCoHKLd5RT95zWZ9rOfTEA2xTmngMaU0bmPbjK57L5__fYmFUARllqCpuQgoCU6yGgy2wizt2gM6SOCcQQ7321ujSYUuHd9nzXvXjx_uzlvL16_fLV5dtFaJtncdlhQBgOx1lBpsRisw8bKkYzWSWKUUgPnvbXA-wEz44DWvTjJnBPGUlD0rHm66u6XYQJnobZugt7nOkk-6GS8_jsT_U5v0wctlaiHVIFH1wI5vV-gzHryxUIIJkJaiu44oR3jSvCKPvwHvUxLrhutlCK96DHFXaW6lbI5lZJhPDZDsL5yV6_u6uqu_umuvpJ-8OcYx5JfdlaArkCpqbiF_Pvv_8j-AKkVtbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918680302</pqid></control><display><type>article</type><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><source>ProQuest Central (Alumni Edition)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</creator><creatorcontrib>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</creatorcontrib><description>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</description><identifier>ISSN: 1871-4080</identifier><identifier>EISSN: 1871-4099</identifier><identifier>DOI: 10.1007/s11571-020-09606-5</identifier><identifier>PMID: 33854647</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Behavior ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bursting ; Bursting strength ; Circuit design ; Cognitive Psychology ; Computer Science ; Electromagnetic induction ; Electromagnetism ; Electronic circuits ; Epilepsy ; Firing pattern ; Hopf bifurcation ; Investigations ; Liapunov exponents ; Magnetic fields ; Magnetic flux ; Nervous system ; Neural networks ; Neurons ; Neurosciences ; Optimal control ; Ordinary differential equations ; Research Article ; Synchronism ; Synchronization</subject><ispartof>Cognitive neurodynamics, 2021-04, Vol.15 (2), p.315-347</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</citedby><cites>FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969691/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918680302?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,21387,21388,27923,27924,33529,33530,33743,33744,41487,42556,43658,43804,51318,53790,53792,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33854647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wouapi, Marcel Kemayou</creatorcontrib><creatorcontrib>Fotsin, Bertrand Hilaire</creatorcontrib><creatorcontrib>Ngouonkadi, Elie Bertrand Megam</creatorcontrib><creatorcontrib>Kemwoue, Florent Feudjio</creatorcontrib><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><title>Cognitive neurodynamics</title><addtitle>Cogn Neurodyn</addtitle><addtitle>Cogn Neurodyn</addtitle><description>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</description><subject>Artificial Intelligence</subject><subject>Behavior</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bursting</subject><subject>Bursting strength</subject><subject>Circuit design</subject><subject>Cognitive Psychology</subject><subject>Computer Science</subject><subject>Electromagnetic induction</subject><subject>Electromagnetism</subject><subject>Electronic circuits</subject><subject>Epilepsy</subject><subject>Firing pattern</subject><subject>Hopf bifurcation</subject><subject>Investigations</subject><subject>Liapunov exponents</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Optimal control</subject><subject>Ordinary differential equations</subject><subject>Research Article</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>1871-4080</issn><issn>1871-4099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFDEQxxtR3HX1BTxIwIuX1qTz1bkIMqgrLAii55BOqmeypJMx6VZHEHwH39AnMWuv48dBckiR-tU_VfVvmvsEPyYYyyeFEC5JizvcYiWwaPmN5pT09YlhpW4e4x6fNHdKucSYi56w280JpT1ngsnT5ssmTfsAn9DgxyVbM_sUkYkmHIovNXCoHKLd5RT95zWZ9rOfTEA2xTmngMaU0bmPbjK57L5__fYmFUARllqCpuQgoCU6yGgy2wizt2gM6SOCcQQ7321ujSYUuHd9nzXvXjx_uzlvL16_fLV5dtFaJtncdlhQBgOx1lBpsRisw8bKkYzWSWKUUgPnvbXA-wEz44DWvTjJnBPGUlD0rHm66u6XYQJnobZugt7nOkk-6GS8_jsT_U5v0wctlaiHVIFH1wI5vV-gzHryxUIIJkJaiu44oR3jSvCKPvwHvUxLrhutlCK96DHFXaW6lbI5lZJhPDZDsL5yV6_u6uqu_umuvpJ-8OcYx5JfdlaArkCpqbiF_Pvv_8j-AKkVtbY</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wouapi, Marcel Kemayou</creator><creator>Fotsin, Bertrand Hilaire</creator><creator>Ngouonkadi, Elie Bertrand Megam</creator><creator>Kemwoue, Florent Feudjio</creator><creator>Njitacke, Zeric Tabekoueng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</title><author>Wouapi, Marcel Kemayou ; Fotsin, Bertrand Hilaire ; Ngouonkadi, Elie Bertrand Megam ; Kemwoue, Florent Feudjio ; Njitacke, Zeric Tabekoueng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-20634eb1cca37c06bcd0ac7f1fcd71a999b558cce58b04ade3571d74dd6ac3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Behavior</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bursting</topic><topic>Bursting strength</topic><topic>Circuit design</topic><topic>Cognitive Psychology</topic><topic>Computer Science</topic><topic>Electromagnetic induction</topic><topic>Electromagnetism</topic><topic>Electronic circuits</topic><topic>Epilepsy</topic><topic>Firing pattern</topic><topic>Hopf bifurcation</topic><topic>Investigations</topic><topic>Liapunov exponents</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Optimal control</topic><topic>Ordinary differential equations</topic><topic>Research Article</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wouapi, Marcel Kemayou</creatorcontrib><creatorcontrib>Fotsin, Bertrand Hilaire</creatorcontrib><creatorcontrib>Ngouonkadi, Elie Bertrand Megam</creatorcontrib><creatorcontrib>Kemwoue, Florent Feudjio</creatorcontrib><creatorcontrib>Njitacke, Zeric Tabekoueng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cognitive neurodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouapi, Marcel Kemayou</au><au>Fotsin, Bertrand Hilaire</au><au>Ngouonkadi, Elie Bertrand Megam</au><au>Kemwoue, Florent Feudjio</au><au>Njitacke, Zeric Tabekoueng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect</atitle><jtitle>Cognitive neurodynamics</jtitle><stitle>Cogn Neurodyn</stitle><addtitle>Cogn Neurodyn</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>315</spage><epage>347</epage><pages>315-347</pages><issn>1871-4080</issn><eissn>1871-4099</eissn><abstract>In this contribution, the complex behaviour of the Hindmarsh–Rose neuron model under magnetic flow effect (mHR) is investigated in terms of bifurcation diagrams, Lyapunov exponent plots and time series when varying only the electromagnetic induction strength. Some exciting phenomena are found including, for instance, various firings patterns by applying appropriate magnetic strength and Hopf-fold bursting through fast–slow bifurcation. In addition to this, the interesting phenomenon of Hopf bifurcation is examined in the model. Thus, we prove that Hopf bifurcation occurs in this memristor-based HR neuron model when an appropriately chosen magnetic flux varies and reaches its critical value. Furthermore, one of the main results of this work was the optimal control approach to realize the synchronization of two mHR. The main advantage of the proposed optimal master–slave synchronization from a control point of view is that, in the practical application, the electrical activities (quiescent, bursting, spiking, period and chaos states) of a neuron can be regulated by a pacemaker (master) associated with biological neuron (slave) to treat some diseases such as epilepsy. A suitable electronic circuit is designed and used for the investigations. PSpice based simulation results confirm that the electrical activities and synchronization between coupled neurons can be modulated by electromagnetic flux.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33854647</pmid><doi>10.1007/s11571-020-09606-5</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1871-4080
ispartof Cognitive neurodynamics, 2021-04, Vol.15 (2), p.315-347
issn 1871-4080
1871-4099
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969691
source ProQuest Central (Alumni Edition); EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Behavior
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bursting
Bursting strength
Circuit design
Cognitive Psychology
Computer Science
Electromagnetic induction
Electromagnetism
Electronic circuits
Epilepsy
Firing pattern
Hopf bifurcation
Investigations
Liapunov exponents
Magnetic fields
Magnetic flux
Nervous system
Neural networks
Neurons
Neurosciences
Optimal control
Ordinary differential equations
Research Article
Synchronism
Synchronization
title Complex bifurcation analysis and synchronization optimal control for Hindmarsh–Rose neuron model under magnetic flow effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20bifurcation%20analysis%20and%20synchronization%20optimal%20control%20for%20Hindmarsh%E2%80%93Rose%20neuron%20model%20under%20magnetic%20flow%20effect&rft.jtitle=Cognitive%20neurodynamics&rft.au=Wouapi,%20Marcel%20Kemayou&rft.date=2021-04-01&rft.volume=15&rft.issue=2&rft.spage=315&rft.epage=347&rft.pages=315-347&rft.issn=1871-4080&rft.eissn=1871-4099&rft_id=info:doi/10.1007/s11571-020-09606-5&rft_dat=%3Cproquest_pubme%3E2918680302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918680302&rft_id=info:pmid/33854647&rfr_iscdi=true