Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images
Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture mo...
Gespeichert in:
Veröffentlicht in: | American journal of neuroradiology : AJNR 2015-04, Vol.36 (4), p.678-685 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 4 |
container_start_page | 678 |
container_title | American journal of neuroradiology : AJNR |
container_volume | 36 |
creator | Steed, T C Treiber, J M Patel, K S Taich, Z White, N S Treiber, M L Farid, N Carter, B S Dale, A M Chen, C C |
description | Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive.
Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient.
Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available.
Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications. |
doi_str_mv | 10.3174/ajnr.A4171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1672605428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTju68QEkSxFqzE3lp-JCaBp_Ggbc9MJdSKWS6gypSptUNzML3920Mw66chXI_e7HuRyEXgO5akGy9-ZmzldrBhKeoBWoVjSKq-9P0YqA4o0A0l2gF6XcEEK4kvQ5uqCcASMEVujndnHZLOHk8CGn3vQhhrIEi0_p1kUcTe9imMcP2ByXNJnFDbi4cXLzUpfSjH3K2Mwm3pVQcPJ4t3d4Y2brMt5OZqyreJ3t_uwfY0h9NOXswaEOXXmJnnkTi3v18F6i3edPu83X5vrbl-1mfd1YBrA0oqd9T4mXgg8AzEtFFHAjuoErDlZ6Tqz1dOigF8DbgdUv1TIp3CB8x9tL9PFeezj2kxtsTZ9N1IdcU-Q7nUzQ_07msNdjOmmpBGupqIK3D4KcfhxdWfQUinUxmtmlY9HQkU5SEBz-jwpJBeGMdhV9d4_anErJzj8mAqLPzepzs_p3sxV-8_cNj-ifKttf7CaiOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672605428</pqid></control><display><type>article</type><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</creator><creatorcontrib>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</creatorcontrib><description>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive.
Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient.
Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available.
Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</description><identifier>ISSN: 0195-6108</identifier><identifier>EISSN: 1936-959X</identifier><identifier>DOI: 10.3174/ajnr.A4171</identifier><identifier>PMID: 25414001</identifier><language>eng</language><publisher>United States: American Society of Neuroradiology</publisher><subject>Algorithms ; Archives ; Brain ; Brain Neoplasms - pathology ; Glioblastoma - pathology ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Neuroimaging - methods</subject><ispartof>American journal of neuroradiology : AJNR, 2015-04, Vol.36 (4), p.678-685</ispartof><rights>2015 by American Journal of Neuroradiology.</rights><rights>2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</citedby><cites>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</cites><orcidid>0000-0002-8963-0652 ; 0000-0002-2533-0888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964326/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964326/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25414001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steed, T C</creatorcontrib><creatorcontrib>Treiber, J M</creatorcontrib><creatorcontrib>Patel, K S</creatorcontrib><creatorcontrib>Taich, Z</creatorcontrib><creatorcontrib>White, N S</creatorcontrib><creatorcontrib>Treiber, M L</creatorcontrib><creatorcontrib>Farid, N</creatorcontrib><creatorcontrib>Carter, B S</creatorcontrib><creatorcontrib>Dale, A M</creatorcontrib><creatorcontrib>Chen, C C</creatorcontrib><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><title>American journal of neuroradiology : AJNR</title><addtitle>AJNR Am J Neuroradiol</addtitle><description>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive.
Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient.
Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available.
Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</description><subject>Algorithms</subject><subject>Archives</subject><subject>Brain</subject><subject>Brain Neoplasms - pathology</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neuroimaging - methods</subject><issn>0195-6108</issn><issn>1936-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2KFDEUhYMoTju68QEkSxFqzE3lp-JCaBp_Ggbc9MJdSKWS6gypSptUNzML3920Mw66chXI_e7HuRyEXgO5akGy9-ZmzldrBhKeoBWoVjSKq-9P0YqA4o0A0l2gF6XcEEK4kvQ5uqCcASMEVujndnHZLOHk8CGn3vQhhrIEi0_p1kUcTe9imMcP2ByXNJnFDbi4cXLzUpfSjH3K2Mwm3pVQcPJ4t3d4Y2brMt5OZqyreJ3t_uwfY0h9NOXswaEOXXmJnnkTi3v18F6i3edPu83X5vrbl-1mfd1YBrA0oqd9T4mXgg8AzEtFFHAjuoErDlZ6Tqz1dOigF8DbgdUv1TIp3CB8x9tL9PFeezj2kxtsTZ9N1IdcU-Q7nUzQ_07msNdjOmmpBGupqIK3D4KcfhxdWfQUinUxmtmlY9HQkU5SEBz-jwpJBeGMdhV9d4_anErJzj8mAqLPzepzs_p3sxV-8_cNj-ifKttf7CaiOA</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Steed, T C</creator><creator>Treiber, J M</creator><creator>Patel, K S</creator><creator>Taich, Z</creator><creator>White, N S</creator><creator>Treiber, M L</creator><creator>Farid, N</creator><creator>Carter, B S</creator><creator>Dale, A M</creator><creator>Chen, C C</creator><general>American Society of Neuroradiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8963-0652</orcidid><orcidid>https://orcid.org/0000-0002-2533-0888</orcidid></search><sort><creationdate>201504</creationdate><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><author>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Archives</topic><topic>Brain</topic><topic>Brain Neoplasms - pathology</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neuroimaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steed, T C</creatorcontrib><creatorcontrib>Treiber, J M</creatorcontrib><creatorcontrib>Patel, K S</creatorcontrib><creatorcontrib>Taich, Z</creatorcontrib><creatorcontrib>White, N S</creatorcontrib><creatorcontrib>Treiber, M L</creatorcontrib><creatorcontrib>Farid, N</creatorcontrib><creatorcontrib>Carter, B S</creatorcontrib><creatorcontrib>Dale, A M</creatorcontrib><creatorcontrib>Chen, C C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of neuroradiology : AJNR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steed, T C</au><au>Treiber, J M</au><au>Patel, K S</au><au>Taich, Z</au><au>White, N S</au><au>Treiber, M L</au><au>Farid, N</au><au>Carter, B S</au><au>Dale, A M</au><au>Chen, C C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</atitle><jtitle>American journal of neuroradiology : AJNR</jtitle><addtitle>AJNR Am J Neuroradiol</addtitle><date>2015-04</date><risdate>2015</risdate><volume>36</volume><issue>4</issue><spage>678</spage><epage>685</epage><pages>678-685</pages><issn>0195-6108</issn><eissn>1936-959X</eissn><abstract>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive.
Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient.
Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available.
Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</abstract><cop>United States</cop><pub>American Society of Neuroradiology</pub><pmid>25414001</pmid><doi>10.3174/ajnr.A4171</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8963-0652</orcidid><orcidid>https://orcid.org/0000-0002-2533-0888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6108 |
ispartof | American journal of neuroradiology : AJNR, 2015-04, Vol.36 (4), p.678-685 |
issn | 0195-6108 1936-959X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964326 |
source | MEDLINE; PMC (PubMed Central); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Archives Brain Brain Neoplasms - pathology Glioblastoma - pathology Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Neuroimaging - methods |
title | Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20probabilistic%20voxel%20labeling:%20automated%20segmentation%20for%20analysis%20of%20The%20Cancer%20Imaging%20Archive%20glioblastoma%20images&rft.jtitle=American%20journal%20of%20neuroradiology%20:%20AJNR&rft.au=Steed,%20T%20C&rft.date=2015-04&rft.volume=36&rft.issue=4&rft.spage=678&rft.epage=685&rft.pages=678-685&rft.issn=0195-6108&rft.eissn=1936-959X&rft_id=info:doi/10.3174/ajnr.A4171&rft_dat=%3Cproquest_pubme%3E1672605428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672605428&rft_id=info:pmid/25414001&rfr_iscdi=true |