Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images

Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of neuroradiology : AJNR 2015-04, Vol.36 (4), p.678-685
Hauptverfasser: Steed, T C, Treiber, J M, Patel, K S, Taich, Z, White, N S, Treiber, M L, Farid, N, Carter, B S, Dale, A M, Chen, C C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 4
container_start_page 678
container_title American journal of neuroradiology : AJNR
container_volume 36
creator Steed, T C
Treiber, J M
Patel, K S
Taich, Z
White, N S
Treiber, M L
Farid, N
Carter, B S
Dale, A M
Chen, C C
description Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive. Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient. Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available. Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.
doi_str_mv 10.3174/ajnr.A4171
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1672605428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTju68QEkSxFqzE3lp-JCaBp_Ggbc9MJdSKWS6gypSptUNzML3920Mw66chXI_e7HuRyEXgO5akGy9-ZmzldrBhKeoBWoVjSKq-9P0YqA4o0A0l2gF6XcEEK4kvQ5uqCcASMEVujndnHZLOHk8CGn3vQhhrIEi0_p1kUcTe9imMcP2ByXNJnFDbi4cXLzUpfSjH3K2Mwm3pVQcPJ4t3d4Y2brMt5OZqyreJ3t_uwfY0h9NOXswaEOXXmJnnkTi3v18F6i3edPu83X5vrbl-1mfd1YBrA0oqd9T4mXgg8AzEtFFHAjuoErDlZ6Tqz1dOigF8DbgdUv1TIp3CB8x9tL9PFeezj2kxtsTZ9N1IdcU-Q7nUzQ_07msNdjOmmpBGupqIK3D4KcfhxdWfQUinUxmtmlY9HQkU5SEBz-jwpJBeGMdhV9d4_anErJzj8mAqLPzepzs_p3sxV-8_cNj-ifKttf7CaiOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672605428</pqid></control><display><type>article</type><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</creator><creatorcontrib>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</creatorcontrib><description>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive. Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient. Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available. Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</description><identifier>ISSN: 0195-6108</identifier><identifier>EISSN: 1936-959X</identifier><identifier>DOI: 10.3174/ajnr.A4171</identifier><identifier>PMID: 25414001</identifier><language>eng</language><publisher>United States: American Society of Neuroradiology</publisher><subject>Algorithms ; Archives ; Brain ; Brain Neoplasms - pathology ; Glioblastoma - pathology ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Neuroimaging - methods</subject><ispartof>American journal of neuroradiology : AJNR, 2015-04, Vol.36 (4), p.678-685</ispartof><rights>2015 by American Journal of Neuroradiology.</rights><rights>2015 by American Journal of Neuroradiology 2015 American Journal of Neuroradiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</citedby><cites>FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</cites><orcidid>0000-0002-8963-0652 ; 0000-0002-2533-0888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964326/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964326/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25414001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steed, T C</creatorcontrib><creatorcontrib>Treiber, J M</creatorcontrib><creatorcontrib>Patel, K S</creatorcontrib><creatorcontrib>Taich, Z</creatorcontrib><creatorcontrib>White, N S</creatorcontrib><creatorcontrib>Treiber, M L</creatorcontrib><creatorcontrib>Farid, N</creatorcontrib><creatorcontrib>Carter, B S</creatorcontrib><creatorcontrib>Dale, A M</creatorcontrib><creatorcontrib>Chen, C C</creatorcontrib><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><title>American journal of neuroradiology : AJNR</title><addtitle>AJNR Am J Neuroradiol</addtitle><description>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive. Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient. Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available. Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</description><subject>Algorithms</subject><subject>Archives</subject><subject>Brain</subject><subject>Brain Neoplasms - pathology</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neuroimaging - methods</subject><issn>0195-6108</issn><issn>1936-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2KFDEUhYMoTju68QEkSxFqzE3lp-JCaBp_Ggbc9MJdSKWS6gypSptUNzML3920Mw66chXI_e7HuRyEXgO5akGy9-ZmzldrBhKeoBWoVjSKq-9P0YqA4o0A0l2gF6XcEEK4kvQ5uqCcASMEVujndnHZLOHk8CGn3vQhhrIEi0_p1kUcTe9imMcP2ByXNJnFDbi4cXLzUpfSjH3K2Mwm3pVQcPJ4t3d4Y2brMt5OZqyreJ3t_uwfY0h9NOXswaEOXXmJnnkTi3v18F6i3edPu83X5vrbl-1mfd1YBrA0oqd9T4mXgg8AzEtFFHAjuoErDlZ6Tqz1dOigF8DbgdUv1TIp3CB8x9tL9PFeezj2kxtsTZ9N1IdcU-Q7nUzQ_07msNdjOmmpBGupqIK3D4KcfhxdWfQUinUxmtmlY9HQkU5SEBz-jwpJBeGMdhV9d4_anErJzj8mAqLPzepzs_p3sxV-8_cNj-ifKttf7CaiOA</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Steed, T C</creator><creator>Treiber, J M</creator><creator>Patel, K S</creator><creator>Taich, Z</creator><creator>White, N S</creator><creator>Treiber, M L</creator><creator>Farid, N</creator><creator>Carter, B S</creator><creator>Dale, A M</creator><creator>Chen, C C</creator><general>American Society of Neuroradiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8963-0652</orcidid><orcidid>https://orcid.org/0000-0002-2533-0888</orcidid></search><sort><creationdate>201504</creationdate><title>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</title><author>Steed, T C ; Treiber, J M ; Patel, K S ; Taich, Z ; White, N S ; Treiber, M L ; Farid, N ; Carter, B S ; Dale, A M ; Chen, C C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6b2bb20f765d114f790915a68d5951c7f50ccf2d81b6153d4c7f93476ed6f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Archives</topic><topic>Brain</topic><topic>Brain Neoplasms - pathology</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neuroimaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steed, T C</creatorcontrib><creatorcontrib>Treiber, J M</creatorcontrib><creatorcontrib>Patel, K S</creatorcontrib><creatorcontrib>Taich, Z</creatorcontrib><creatorcontrib>White, N S</creatorcontrib><creatorcontrib>Treiber, M L</creatorcontrib><creatorcontrib>Farid, N</creatorcontrib><creatorcontrib>Carter, B S</creatorcontrib><creatorcontrib>Dale, A M</creatorcontrib><creatorcontrib>Chen, C C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of neuroradiology : AJNR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steed, T C</au><au>Treiber, J M</au><au>Patel, K S</au><au>Taich, Z</au><au>White, N S</au><au>Treiber, M L</au><au>Farid, N</au><au>Carter, B S</au><au>Dale, A M</au><au>Chen, C C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images</atitle><jtitle>American journal of neuroradiology : AJNR</jtitle><addtitle>AJNR Am J Neuroradiol</addtitle><date>2015-04</date><risdate>2015</risdate><volume>36</volume><issue>4</issue><spage>678</spage><epage>685</epage><pages>678-685</pages><issn>0195-6108</issn><eissn>1936-959X</eissn><abstract>Robust, automated segmentation algorithms are required for quantitative analysis of large imaging datasets. We developed an automated method that identifies and labels brain tumor-associated pathology by using an iterative probabilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation method which could be applied to a variety of imaging from The Cancer Imaging Archive. Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by trained operators by using the Dice similarity coefficient. Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 ± 0.03 for contrast-enhancing volumes and 0.84 ± 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice similarity coefficients between the operator-defined segmentations: 0.92 ± 0.03 for contrast-enhancing volumes and 0.92 ± 0.05 for FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available. Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes. Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and clinical indications.</abstract><cop>United States</cop><pub>American Society of Neuroradiology</pub><pmid>25414001</pmid><doi>10.3174/ajnr.A4171</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8963-0652</orcidid><orcidid>https://orcid.org/0000-0002-2533-0888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6108
ispartof American journal of neuroradiology : AJNR, 2015-04, Vol.36 (4), p.678-685
issn 0195-6108
1936-959X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7964326
source MEDLINE; PMC (PubMed Central); EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Archives
Brain
Brain Neoplasms - pathology
Glioblastoma - pathology
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Neuroimaging - methods
title Iterative probabilistic voxel labeling: automated segmentation for analysis of The Cancer Imaging Archive glioblastoma images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20probabilistic%20voxel%20labeling:%20automated%20segmentation%20for%20analysis%20of%20The%20Cancer%20Imaging%20Archive%20glioblastoma%20images&rft.jtitle=American%20journal%20of%20neuroradiology%20:%20AJNR&rft.au=Steed,%20T%20C&rft.date=2015-04&rft.volume=36&rft.issue=4&rft.spage=678&rft.epage=685&rft.pages=678-685&rft.issn=0195-6108&rft.eissn=1936-959X&rft_id=info:doi/10.3174/ajnr.A4171&rft_dat=%3Cproquest_pubme%3E1672605428%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672605428&rft_id=info:pmid/25414001&rfr_iscdi=true