A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context
The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is...
Gespeichert in:
Veröffentlicht in: | American journal of neuroradiology : AJNR 2016-11, Vol.37 (11), p.2043-2049 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2049 |
---|---|
container_issue | 11 |
container_start_page | 2043 |
container_title | American journal of neuroradiology : AJNR |
container_volume | 37 |
creator | Storelli, L Pagani, E Rocca, M A Horsfield, M A Gallo, A Bisecco, A Battaglini, M De Stefano, N Vrenken, H Thomas, D L Mancini, L Ropele, S Enzinger, C Preziosa, P Filippi, M |
description | The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented.
The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers.
We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (
> .05).
The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS. |
doi_str_mv | 10.3174/ajnr.A4874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7963767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846395873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cba19dc766fd5fdab7d7ddd02a331444234f53e194c1e3bbdb4f8d60531c91873</originalsourceid><addsrcrecordid>eNqNkVFLHDEUhYNUdGt98QdIHoswNplkJhMfhGW1Kuwi1BZ8C5kksxvJTMZkRtqn_vVmXCv6JgQuId85994cAI4wOiWY0W_yoQunc1oxugNmmJMy4wW__wRmCPMiKzGq9sHnGB8QQgVn-R7YzxmllJNqBv7O4Z1prRwH38rBKrgyw8Zr2PgAV6MbbO8MvFPOBB9thEsTre-SZN2abkiCdEnnYpQuu1QbD1c_4E0r17Zbn8F53zurtpDtoNwaqiQ0AS58Kr-HL2C3kS6aw5d6AH59v_y5uM6Wt1c3i_kyUxTjIVO1xFwrVpaNLhota6aZ1hrlkhCcdskJbQpiMKcKG1LXuqZNpUtUEKw4rhg5AOdb336sW6OnIYJ0og-2leGP8NKK9y-d3Yi1fxKMl4SVk8HXF4PgH0cTB9HaqIxzsjN-jAJXtCS8SK0-gObJEFV4Qk-2qEr_G4NpXifCSEzhiilc8Rxugo_f7vCK_k-T_APS-KL4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826730813</pqid></control><display><type>article</type><title>A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Storelli, L ; Pagani, E ; Rocca, M A ; Horsfield, M A ; Gallo, A ; Bisecco, A ; Battaglini, M ; De Stefano, N ; Vrenken, H ; Thomas, D L ; Mancini, L ; Ropele, S ; Enzinger, C ; Preziosa, P ; Filippi, M</creator><creatorcontrib>Storelli, L ; Pagani, E ; Rocca, M A ; Horsfield, M A ; Gallo, A ; Bisecco, A ; Battaglini, M ; De Stefano, N ; Vrenken, H ; Thomas, D L ; Mancini, L ; Ropele, S ; Enzinger, C ; Preziosa, P ; Filippi, M</creatorcontrib><description>The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented.
The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers.
We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (
> .05).
The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS.</description><identifier>ISSN: 0195-6108</identifier><identifier>EISSN: 1936-959X</identifier><identifier>DOI: 10.3174/ajnr.A4874</identifier><identifier>PMID: 27444938</identifier><language>eng</language><publisher>United States: American Society of Neuroradiology</publisher><subject>Adult Brain</subject><ispartof>American journal of neuroradiology : AJNR, 2016-11, Vol.37 (11), p.2043-2049</ispartof><rights>2016 by American Journal of Neuroradiology.</rights><rights>2016 by American Journal of Neuroradiology 2016 American Journal of Neuroradiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cba19dc766fd5fdab7d7ddd02a331444234f53e194c1e3bbdb4f8d60531c91873</citedby><cites>FETCH-LOGICAL-c411t-cba19dc766fd5fdab7d7ddd02a331444234f53e194c1e3bbdb4f8d60531c91873</cites><orcidid>0000-0001-9764-7617 ; 0000-0002-4596-3551 ; 0000-0001-9106-1172 ; 0000-0002-0815-6697 ; 0000-0003-2358-4320 ; 0000-0002-7202-4445 ; 0000-0002-7826-0019 ; 0000-0002-9188-4408 ; 0000-0002-5485-0479 ; 0000-0002-1850-1175 ; 0000-0002-5559-768X ; 0000-0003-1491-1641 ; 0000-0002-2203-6237 ; 0000-0003-4930-7639 ; 0000-0002-4979-613X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963767/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963767/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27444938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Storelli, L</creatorcontrib><creatorcontrib>Pagani, E</creatorcontrib><creatorcontrib>Rocca, M A</creatorcontrib><creatorcontrib>Horsfield, M A</creatorcontrib><creatorcontrib>Gallo, A</creatorcontrib><creatorcontrib>Bisecco, A</creatorcontrib><creatorcontrib>Battaglini, M</creatorcontrib><creatorcontrib>De Stefano, N</creatorcontrib><creatorcontrib>Vrenken, H</creatorcontrib><creatorcontrib>Thomas, D L</creatorcontrib><creatorcontrib>Mancini, L</creatorcontrib><creatorcontrib>Ropele, S</creatorcontrib><creatorcontrib>Enzinger, C</creatorcontrib><creatorcontrib>Preziosa, P</creatorcontrib><creatorcontrib>Filippi, M</creatorcontrib><title>A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context</title><title>American journal of neuroradiology : AJNR</title><addtitle>AJNR Am J Neuroradiol</addtitle><description>The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented.
The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers.
We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (
> .05).
The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS.</description><subject>Adult Brain</subject><issn>0195-6108</issn><issn>1936-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkVFLHDEUhYNUdGt98QdIHoswNplkJhMfhGW1Kuwi1BZ8C5kksxvJTMZkRtqn_vVmXCv6JgQuId85994cAI4wOiWY0W_yoQunc1oxugNmmJMy4wW__wRmCPMiKzGq9sHnGB8QQgVn-R7YzxmllJNqBv7O4Z1prRwH38rBKrgyw8Zr2PgAV6MbbO8MvFPOBB9thEsTre-SZN2abkiCdEnnYpQuu1QbD1c_4E0r17Zbn8F53zurtpDtoNwaqiQ0AS58Kr-HL2C3kS6aw5d6AH59v_y5uM6Wt1c3i_kyUxTjIVO1xFwrVpaNLhota6aZ1hrlkhCcdskJbQpiMKcKG1LXuqZNpUtUEKw4rhg5AOdb336sW6OnIYJ0og-2leGP8NKK9y-d3Yi1fxKMl4SVk8HXF4PgH0cTB9HaqIxzsjN-jAJXtCS8SK0-gObJEFV4Qk-2qEr_G4NpXifCSEzhiilc8Rxugo_f7vCK_k-T_APS-KL4</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Storelli, L</creator><creator>Pagani, E</creator><creator>Rocca, M A</creator><creator>Horsfield, M A</creator><creator>Gallo, A</creator><creator>Bisecco, A</creator><creator>Battaglini, M</creator><creator>De Stefano, N</creator><creator>Vrenken, H</creator><creator>Thomas, D L</creator><creator>Mancini, L</creator><creator>Ropele, S</creator><creator>Enzinger, C</creator><creator>Preziosa, P</creator><creator>Filippi, M</creator><general>American Society of Neuroradiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9764-7617</orcidid><orcidid>https://orcid.org/0000-0002-4596-3551</orcidid><orcidid>https://orcid.org/0000-0001-9106-1172</orcidid><orcidid>https://orcid.org/0000-0002-0815-6697</orcidid><orcidid>https://orcid.org/0000-0003-2358-4320</orcidid><orcidid>https://orcid.org/0000-0002-7202-4445</orcidid><orcidid>https://orcid.org/0000-0002-7826-0019</orcidid><orcidid>https://orcid.org/0000-0002-9188-4408</orcidid><orcidid>https://orcid.org/0000-0002-5485-0479</orcidid><orcidid>https://orcid.org/0000-0002-1850-1175</orcidid><orcidid>https://orcid.org/0000-0002-5559-768X</orcidid><orcidid>https://orcid.org/0000-0003-1491-1641</orcidid><orcidid>https://orcid.org/0000-0002-2203-6237</orcidid><orcidid>https://orcid.org/0000-0003-4930-7639</orcidid><orcidid>https://orcid.org/0000-0002-4979-613X</orcidid></search><sort><creationdate>201611</creationdate><title>A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context</title><author>Storelli, L ; Pagani, E ; Rocca, M A ; Horsfield, M A ; Gallo, A ; Bisecco, A ; Battaglini, M ; De Stefano, N ; Vrenken, H ; Thomas, D L ; Mancini, L ; Ropele, S ; Enzinger, C ; Preziosa, P ; Filippi, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cba19dc766fd5fdab7d7ddd02a331444234f53e194c1e3bbdb4f8d60531c91873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult Brain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storelli, L</creatorcontrib><creatorcontrib>Pagani, E</creatorcontrib><creatorcontrib>Rocca, M A</creatorcontrib><creatorcontrib>Horsfield, M A</creatorcontrib><creatorcontrib>Gallo, A</creatorcontrib><creatorcontrib>Bisecco, A</creatorcontrib><creatorcontrib>Battaglini, M</creatorcontrib><creatorcontrib>De Stefano, N</creatorcontrib><creatorcontrib>Vrenken, H</creatorcontrib><creatorcontrib>Thomas, D L</creatorcontrib><creatorcontrib>Mancini, L</creatorcontrib><creatorcontrib>Ropele, S</creatorcontrib><creatorcontrib>Enzinger, C</creatorcontrib><creatorcontrib>Preziosa, P</creatorcontrib><creatorcontrib>Filippi, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of neuroradiology : AJNR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Storelli, L</au><au>Pagani, E</au><au>Rocca, M A</au><au>Horsfield, M A</au><au>Gallo, A</au><au>Bisecco, A</au><au>Battaglini, M</au><au>De Stefano, N</au><au>Vrenken, H</au><au>Thomas, D L</au><au>Mancini, L</au><au>Ropele, S</au><au>Enzinger, C</au><au>Preziosa, P</au><au>Filippi, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context</atitle><jtitle>American journal of neuroradiology : AJNR</jtitle><addtitle>AJNR Am J Neuroradiol</addtitle><date>2016-11</date><risdate>2016</risdate><volume>37</volume><issue>11</issue><spage>2043</spage><epage>2049</epage><pages>2043-2049</pages><issn>0195-6108</issn><eissn>1936-959X</eissn><abstract>The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented.
The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers.
We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (
> .05).
The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS.</abstract><cop>United States</cop><pub>American Society of Neuroradiology</pub><pmid>27444938</pmid><doi>10.3174/ajnr.A4874</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9764-7617</orcidid><orcidid>https://orcid.org/0000-0002-4596-3551</orcidid><orcidid>https://orcid.org/0000-0001-9106-1172</orcidid><orcidid>https://orcid.org/0000-0002-0815-6697</orcidid><orcidid>https://orcid.org/0000-0003-2358-4320</orcidid><orcidid>https://orcid.org/0000-0002-7202-4445</orcidid><orcidid>https://orcid.org/0000-0002-7826-0019</orcidid><orcidid>https://orcid.org/0000-0002-9188-4408</orcidid><orcidid>https://orcid.org/0000-0002-5485-0479</orcidid><orcidid>https://orcid.org/0000-0002-1850-1175</orcidid><orcidid>https://orcid.org/0000-0002-5559-768X</orcidid><orcidid>https://orcid.org/0000-0003-1491-1641</orcidid><orcidid>https://orcid.org/0000-0002-2203-6237</orcidid><orcidid>https://orcid.org/0000-0003-4930-7639</orcidid><orcidid>https://orcid.org/0000-0002-4979-613X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6108 |
ispartof | American journal of neuroradiology : AJNR, 2016-11, Vol.37 (11), p.2043-2049 |
issn | 0195-6108 1936-959X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7963767 |
source | PubMed Central; EZB Electronic Journals Library |
subjects | Adult Brain |
title | A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semiautomatic%20Method%20for%20Multiple%20Sclerosis%20Lesion%20Segmentation%20on%20Dual-Echo%20MR%20Imaging:%20Application%20in%20a%20Multicenter%20Context&rft.jtitle=American%20journal%20of%20neuroradiology%20:%20AJNR&rft.au=Storelli,%20L&rft.date=2016-11&rft.volume=37&rft.issue=11&rft.spage=2043&rft.epage=2049&rft.pages=2043-2049&rft.issn=0195-6108&rft.eissn=1936-959X&rft_id=info:doi/10.3174/ajnr.A4874&rft_dat=%3Cproquest_pubme%3E1846395873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826730813&rft_id=info:pmid/27444938&rfr_iscdi=true |