Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle

The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-03, Vol.22 (5), p.2475
Hauptverfasser: Olejnickova, Veronika, Kocka, Matej, Kvasilova, Alena, Kolesova, Hana, Dziacky, Adam, Gidor, Tom, Gidor, Lihi, Sankova, Barbora, Gregorovicova, Martina, Gourdie, Robert G, Sedmera, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 2475
container_title International journal of molecular sciences
container_volume 22
creator Olejnickova, Veronika
Kocka, Matej
Kvasilova, Alena
Kolesova, Hana
Dziacky, Adam
Gidor, Tom
Gidor, Lihi
Sankova, Barbora
Gregorovicova, Martina
Gourdie, Robert G
Sedmera, David
description The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.
doi_str_mv 10.3390/ijms22052475
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7957598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497614908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</originalsourceid><addsrcrecordid>eNpdkstu1DAUhiMEoqWwY40ssWHBgONL7GyQqtG0gKZiFlyWluOctB4SO9jO0Hkk3hKHKdXAyvbxp_8_t6J4XuI3lNb4rd0OkRDMCRP8QXFaMkIWGFfi4dH9pHgS4xZjQgmvHxcnlErMGJGnxa9LPaKPkzPJeqd7tPTDMDlr9PxGO6tzxDm4tY5R1ED6CeDQZgrfrdsCurANhIi0a9E3P8eu0dXem32CiFa3Y6-tiyjdAFqNWTK0NjucZ6vdQX6jU4LgkHV_oI2PyemUmSs_RUBr6BL6Ci4Fa3p4WjzqdB_h2d15Vny5WH1evl-sP11-WJ6vF4aVJC3KxnDZEUE4rqTARLYCi47z3CJMGBO0Y6RlAIBNSyTH2HS6NR2pGkKAtg09K94ddMepGaA1s7_u1RjsoMNeeW3Vvz_O3qhrv1Oi5oLXMgu8uhMI_scEManBRgN9rx3kulTOTHJBZSUy-vI_dOunkOeQKVaLqmQ1ngVfHygTfIwBuvtkSqzmHVDHO5DxF8cF3MN_h05_AyHvsIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497614908</pqid></control><display><type>article</type><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</creator><creatorcontrib>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</creatorcontrib><description>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22052475</identifier><identifier>PMID: 33804428</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Apexes ; Cardiac arrhythmia ; Cell Communication ; Conduction ; Connexin 43 ; Connexin 43 - physiology ; Disks ; Electric pulses ; Electrical junctions ; Female ; Fibers ; Fluorescence ; Gap junctions ; Gap Junctions - physiology ; Heart ; Heart Ventricles - pathology ; Male ; Mice ; Morphology ; Muscle Cells - cytology ; Muscle Cells - physiology ; Myocardium ; Myocytes ; Pacemakers ; Pericardium - cytology ; Pericardium - physiology ; Phosphorylation ; Purkinje fibers ; Purkinje Fibers - cytology ; Purkinje Fibers - physiology ; Surgical implants ; Transgenic mice ; Ventricle</subject><ispartof>International journal of molecular sciences, 2021-03, Vol.22 (5), p.2475</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</citedby><cites>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</cites><orcidid>0000-0002-6828-3671 ; 0000-0001-6021-0796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33804428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olejnickova, Veronika</creatorcontrib><creatorcontrib>Kocka, Matej</creatorcontrib><creatorcontrib>Kvasilova, Alena</creatorcontrib><creatorcontrib>Kolesova, Hana</creatorcontrib><creatorcontrib>Dziacky, Adam</creatorcontrib><creatorcontrib>Gidor, Tom</creatorcontrib><creatorcontrib>Gidor, Lihi</creatorcontrib><creatorcontrib>Sankova, Barbora</creatorcontrib><creatorcontrib>Gregorovicova, Martina</creatorcontrib><creatorcontrib>Gourdie, Robert G</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</description><subject>Animals</subject><subject>Apexes</subject><subject>Cardiac arrhythmia</subject><subject>Cell Communication</subject><subject>Conduction</subject><subject>Connexin 43</subject><subject>Connexin 43 - physiology</subject><subject>Disks</subject><subject>Electric pulses</subject><subject>Electrical junctions</subject><subject>Female</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>Gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>Heart</subject><subject>Heart Ventricles - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Morphology</subject><subject>Muscle Cells - cytology</subject><subject>Muscle Cells - physiology</subject><subject>Myocardium</subject><subject>Myocytes</subject><subject>Pacemakers</subject><subject>Pericardium - cytology</subject><subject>Pericardium - physiology</subject><subject>Phosphorylation</subject><subject>Purkinje fibers</subject><subject>Purkinje Fibers - cytology</subject><subject>Purkinje Fibers - physiology</subject><subject>Surgical implants</subject><subject>Transgenic mice</subject><subject>Ventricle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkstu1DAUhiMEoqWwY40ssWHBgONL7GyQqtG0gKZiFlyWluOctB4SO9jO0Hkk3hKHKdXAyvbxp_8_t6J4XuI3lNb4rd0OkRDMCRP8QXFaMkIWGFfi4dH9pHgS4xZjQgmvHxcnlErMGJGnxa9LPaKPkzPJeqd7tPTDMDlr9PxGO6tzxDm4tY5R1ED6CeDQZgrfrdsCurANhIi0a9E3P8eu0dXem32CiFa3Y6-tiyjdAFqNWTK0NjucZ6vdQX6jU4LgkHV_oI2PyemUmSs_RUBr6BL6Ci4Fa3p4WjzqdB_h2d15Vny5WH1evl-sP11-WJ6vF4aVJC3KxnDZEUE4rqTARLYCi47z3CJMGBO0Y6RlAIBNSyTH2HS6NR2pGkKAtg09K94ddMepGaA1s7_u1RjsoMNeeW3Vvz_O3qhrv1Oi5oLXMgu8uhMI_scEManBRgN9rx3kulTOTHJBZSUy-vI_dOunkOeQKVaLqmQ1ngVfHygTfIwBuvtkSqzmHVDHO5DxF8cF3MN_h05_AyHvsIA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Olejnickova, Veronika</creator><creator>Kocka, Matej</creator><creator>Kvasilova, Alena</creator><creator>Kolesova, Hana</creator><creator>Dziacky, Adam</creator><creator>Gidor, Tom</creator><creator>Gidor, Lihi</creator><creator>Sankova, Barbora</creator><creator>Gregorovicova, Martina</creator><creator>Gourdie, Robert G</creator><creator>Sedmera, David</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6828-3671</orcidid><orcidid>https://orcid.org/0000-0001-6021-0796</orcidid></search><sort><creationdate>20210301</creationdate><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><author>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apexes</topic><topic>Cardiac arrhythmia</topic><topic>Cell Communication</topic><topic>Conduction</topic><topic>Connexin 43</topic><topic>Connexin 43 - physiology</topic><topic>Disks</topic><topic>Electric pulses</topic><topic>Electrical junctions</topic><topic>Female</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>Gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>Heart</topic><topic>Heart Ventricles - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Morphology</topic><topic>Muscle Cells - cytology</topic><topic>Muscle Cells - physiology</topic><topic>Myocardium</topic><topic>Myocytes</topic><topic>Pacemakers</topic><topic>Pericardium - cytology</topic><topic>Pericardium - physiology</topic><topic>Phosphorylation</topic><topic>Purkinje fibers</topic><topic>Purkinje Fibers - cytology</topic><topic>Purkinje Fibers - physiology</topic><topic>Surgical implants</topic><topic>Transgenic mice</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olejnickova, Veronika</creatorcontrib><creatorcontrib>Kocka, Matej</creatorcontrib><creatorcontrib>Kvasilova, Alena</creatorcontrib><creatorcontrib>Kolesova, Hana</creatorcontrib><creatorcontrib>Dziacky, Adam</creatorcontrib><creatorcontrib>Gidor, Tom</creatorcontrib><creatorcontrib>Gidor, Lihi</creatorcontrib><creatorcontrib>Sankova, Barbora</creatorcontrib><creatorcontrib>Gregorovicova, Martina</creatorcontrib><creatorcontrib>Gourdie, Robert G</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olejnickova, Veronika</au><au>Kocka, Matej</au><au>Kvasilova, Alena</au><au>Kolesova, Hana</au><au>Dziacky, Adam</au><au>Gidor, Tom</au><au>Gidor, Lihi</au><au>Sankova, Barbora</au><au>Gregorovicova, Martina</au><au>Gourdie, Robert G</au><au>Sedmera, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>22</volume><issue>5</issue><spage>2475</spage><pages>2475-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33804428</pmid><doi>10.3390/ijms22052475</doi><orcidid>https://orcid.org/0000-0002-6828-3671</orcidid><orcidid>https://orcid.org/0000-0001-6021-0796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-03, Vol.22 (5), p.2475
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7957598
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Apexes
Cardiac arrhythmia
Cell Communication
Conduction
Connexin 43
Connexin 43 - physiology
Disks
Electric pulses
Electrical junctions
Female
Fibers
Fluorescence
Gap junctions
Gap Junctions - physiology
Heart
Heart Ventricles - pathology
Male
Mice
Morphology
Muscle Cells - cytology
Muscle Cells - physiology
Myocardium
Myocytes
Pacemakers
Pericardium - cytology
Pericardium - physiology
Phosphorylation
Purkinje fibers
Purkinje Fibers - cytology
Purkinje Fibers - physiology
Surgical implants
Transgenic mice
Ventricle
title Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gap%20Junctional%20Communication%20via%20Connexin43%20between%20Purkinje%20Fibers%20and%20Working%20Myocytes%20Explains%20the%20Epicardial%20Activation%20Pattern%20in%20the%20Postnatal%20Mouse%20Left%20Ventricle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Olejnickova,%20Veronika&rft.date=2021-03-01&rft.volume=22&rft.issue=5&rft.spage=2475&rft.pages=2475-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22052475&rft_dat=%3Cproquest_pubme%3E2497614908%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497614908&rft_id=info:pmid/33804428&rfr_iscdi=true