Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle
The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pa...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-03, Vol.22 (5), p.2475 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 2475 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Olejnickova, Veronika Kocka, Matej Kvasilova, Alena Kolesova, Hana Dziacky, Adam Gidor, Tom Gidor, Lihi Sankova, Barbora Gregorovicova, Martina Gourdie, Robert G Sedmera, David |
description | The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium. |
doi_str_mv | 10.3390/ijms22052475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7957598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497614908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</originalsourceid><addsrcrecordid>eNpdkstu1DAUhiMEoqWwY40ssWHBgONL7GyQqtG0gKZiFlyWluOctB4SO9jO0Hkk3hKHKdXAyvbxp_8_t6J4XuI3lNb4rd0OkRDMCRP8QXFaMkIWGFfi4dH9pHgS4xZjQgmvHxcnlErMGJGnxa9LPaKPkzPJeqd7tPTDMDlr9PxGO6tzxDm4tY5R1ED6CeDQZgrfrdsCurANhIi0a9E3P8eu0dXem32CiFa3Y6-tiyjdAFqNWTK0NjucZ6vdQX6jU4LgkHV_oI2PyemUmSs_RUBr6BL6Ci4Fa3p4WjzqdB_h2d15Vny5WH1evl-sP11-WJ6vF4aVJC3KxnDZEUE4rqTARLYCi47z3CJMGBO0Y6RlAIBNSyTH2HS6NR2pGkKAtg09K94ddMepGaA1s7_u1RjsoMNeeW3Vvz_O3qhrv1Oi5oLXMgu8uhMI_scEManBRgN9rx3kulTOTHJBZSUy-vI_dOunkOeQKVaLqmQ1ngVfHygTfIwBuvtkSqzmHVDHO5DxF8cF3MN_h05_AyHvsIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497614908</pqid></control><display><type>article</type><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</creator><creatorcontrib>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</creatorcontrib><description>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22052475</identifier><identifier>PMID: 33804428</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Apexes ; Cardiac arrhythmia ; Cell Communication ; Conduction ; Connexin 43 ; Connexin 43 - physiology ; Disks ; Electric pulses ; Electrical junctions ; Female ; Fibers ; Fluorescence ; Gap junctions ; Gap Junctions - physiology ; Heart ; Heart Ventricles - pathology ; Male ; Mice ; Morphology ; Muscle Cells - cytology ; Muscle Cells - physiology ; Myocardium ; Myocytes ; Pacemakers ; Pericardium - cytology ; Pericardium - physiology ; Phosphorylation ; Purkinje fibers ; Purkinje Fibers - cytology ; Purkinje Fibers - physiology ; Surgical implants ; Transgenic mice ; Ventricle</subject><ispartof>International journal of molecular sciences, 2021-03, Vol.22 (5), p.2475</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</citedby><cites>FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</cites><orcidid>0000-0002-6828-3671 ; 0000-0001-6021-0796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33804428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olejnickova, Veronika</creatorcontrib><creatorcontrib>Kocka, Matej</creatorcontrib><creatorcontrib>Kvasilova, Alena</creatorcontrib><creatorcontrib>Kolesova, Hana</creatorcontrib><creatorcontrib>Dziacky, Adam</creatorcontrib><creatorcontrib>Gidor, Tom</creatorcontrib><creatorcontrib>Gidor, Lihi</creatorcontrib><creatorcontrib>Sankova, Barbora</creatorcontrib><creatorcontrib>Gregorovicova, Martina</creatorcontrib><creatorcontrib>Gourdie, Robert G</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</description><subject>Animals</subject><subject>Apexes</subject><subject>Cardiac arrhythmia</subject><subject>Cell Communication</subject><subject>Conduction</subject><subject>Connexin 43</subject><subject>Connexin 43 - physiology</subject><subject>Disks</subject><subject>Electric pulses</subject><subject>Electrical junctions</subject><subject>Female</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>Gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>Heart</subject><subject>Heart Ventricles - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Morphology</subject><subject>Muscle Cells - cytology</subject><subject>Muscle Cells - physiology</subject><subject>Myocardium</subject><subject>Myocytes</subject><subject>Pacemakers</subject><subject>Pericardium - cytology</subject><subject>Pericardium - physiology</subject><subject>Phosphorylation</subject><subject>Purkinje fibers</subject><subject>Purkinje Fibers - cytology</subject><subject>Purkinje Fibers - physiology</subject><subject>Surgical implants</subject><subject>Transgenic mice</subject><subject>Ventricle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkstu1DAUhiMEoqWwY40ssWHBgONL7GyQqtG0gKZiFlyWluOctB4SO9jO0Hkk3hKHKdXAyvbxp_8_t6J4XuI3lNb4rd0OkRDMCRP8QXFaMkIWGFfi4dH9pHgS4xZjQgmvHxcnlErMGJGnxa9LPaKPkzPJeqd7tPTDMDlr9PxGO6tzxDm4tY5R1ED6CeDQZgrfrdsCurANhIi0a9E3P8eu0dXem32CiFa3Y6-tiyjdAFqNWTK0NjucZ6vdQX6jU4LgkHV_oI2PyemUmSs_RUBr6BL6Ci4Fa3p4WjzqdB_h2d15Vny5WH1evl-sP11-WJ6vF4aVJC3KxnDZEUE4rqTARLYCi47z3CJMGBO0Y6RlAIBNSyTH2HS6NR2pGkKAtg09K94ddMepGaA1s7_u1RjsoMNeeW3Vvz_O3qhrv1Oi5oLXMgu8uhMI_scEManBRgN9rx3kulTOTHJBZSUy-vI_dOunkOeQKVaLqmQ1ngVfHygTfIwBuvtkSqzmHVDHO5DxF8cF3MN_h05_AyHvsIA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Olejnickova, Veronika</creator><creator>Kocka, Matej</creator><creator>Kvasilova, Alena</creator><creator>Kolesova, Hana</creator><creator>Dziacky, Adam</creator><creator>Gidor, Tom</creator><creator>Gidor, Lihi</creator><creator>Sankova, Barbora</creator><creator>Gregorovicova, Martina</creator><creator>Gourdie, Robert G</creator><creator>Sedmera, David</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6828-3671</orcidid><orcidid>https://orcid.org/0000-0001-6021-0796</orcidid></search><sort><creationdate>20210301</creationdate><title>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</title><author>Olejnickova, Veronika ; Kocka, Matej ; Kvasilova, Alena ; Kolesova, Hana ; Dziacky, Adam ; Gidor, Tom ; Gidor, Lihi ; Sankova, Barbora ; Gregorovicova, Martina ; Gourdie, Robert G ; Sedmera, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-1bc58f27250687028d707f55220024473f42d4eee0cd28500cfadcf26b22e3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apexes</topic><topic>Cardiac arrhythmia</topic><topic>Cell Communication</topic><topic>Conduction</topic><topic>Connexin 43</topic><topic>Connexin 43 - physiology</topic><topic>Disks</topic><topic>Electric pulses</topic><topic>Electrical junctions</topic><topic>Female</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>Gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>Heart</topic><topic>Heart Ventricles - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Morphology</topic><topic>Muscle Cells - cytology</topic><topic>Muscle Cells - physiology</topic><topic>Myocardium</topic><topic>Myocytes</topic><topic>Pacemakers</topic><topic>Pericardium - cytology</topic><topic>Pericardium - physiology</topic><topic>Phosphorylation</topic><topic>Purkinje fibers</topic><topic>Purkinje Fibers - cytology</topic><topic>Purkinje Fibers - physiology</topic><topic>Surgical implants</topic><topic>Transgenic mice</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olejnickova, Veronika</creatorcontrib><creatorcontrib>Kocka, Matej</creatorcontrib><creatorcontrib>Kvasilova, Alena</creatorcontrib><creatorcontrib>Kolesova, Hana</creatorcontrib><creatorcontrib>Dziacky, Adam</creatorcontrib><creatorcontrib>Gidor, Tom</creatorcontrib><creatorcontrib>Gidor, Lihi</creatorcontrib><creatorcontrib>Sankova, Barbora</creatorcontrib><creatorcontrib>Gregorovicova, Martina</creatorcontrib><creatorcontrib>Gourdie, Robert G</creatorcontrib><creatorcontrib>Sedmera, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olejnickova, Veronika</au><au>Kocka, Matej</au><au>Kvasilova, Alena</au><au>Kolesova, Hana</au><au>Dziacky, Adam</au><au>Gidor, Tom</au><au>Gidor, Lihi</au><au>Sankova, Barbora</au><au>Gregorovicova, Martina</au><au>Gourdie, Robert G</au><au>Sedmera, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>22</volume><issue>5</issue><spage>2475</spage><pages>2475-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33804428</pmid><doi>10.3390/ijms22052475</doi><orcidid>https://orcid.org/0000-0002-6828-3671</orcidid><orcidid>https://orcid.org/0000-0001-6021-0796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-03, Vol.22 (5), p.2475 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7957598 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Apexes Cardiac arrhythmia Cell Communication Conduction Connexin 43 Connexin 43 - physiology Disks Electric pulses Electrical junctions Female Fibers Fluorescence Gap junctions Gap Junctions - physiology Heart Heart Ventricles - pathology Male Mice Morphology Muscle Cells - cytology Muscle Cells - physiology Myocardium Myocytes Pacemakers Pericardium - cytology Pericardium - physiology Phosphorylation Purkinje fibers Purkinje Fibers - cytology Purkinje Fibers - physiology Surgical implants Transgenic mice Ventricle |
title | Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gap%20Junctional%20Communication%20via%20Connexin43%20between%20Purkinje%20Fibers%20and%20Working%20Myocytes%20Explains%20the%20Epicardial%20Activation%20Pattern%20in%20the%20Postnatal%20Mouse%20Left%20Ventricle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Olejnickova,%20Veronika&rft.date=2021-03-01&rft.volume=22&rft.issue=5&rft.spage=2475&rft.pages=2475-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22052475&rft_dat=%3Cproquest_pubme%3E2497614908%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497614908&rft_id=info:pmid/33804428&rfr_iscdi=true |