External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a...
Gespeichert in:
Veröffentlicht in: | International journal of cardiology 2021-04, Vol.329, p.130-135 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 130 |
container_title | International journal of cardiology |
container_volume | 329 |
creator | Attia, Itzhak Zachi Tseng, Andrew S. Benavente, Ernest Diez Medina-Inojosa, Jose R. Clark, Taane G. Malyutina, Sofia Kapa, Suraj Schirmer, Henrik Kudryavtsev, Alexander V. Noseworthy, Peter A. Carter, Rickey E. Ryabikov, Andrew Perel, Pablo Friedman, Paul A. Leon, David A. Lopez-Jimenez, Francisco |
description | To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population.
LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population.
Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance. |
doi_str_mv | 10.1016/j.ijcard.2020.12.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527320343138</els_id><sourcerecordid>2475531188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxVHVqtkm_QZVy7EXbwBjYy6Vqij9I0XKpTkjDOMNKwxbwKvm2xdrk7S99ITEvHlvZn4IvaNkSwntL_dbtzc62S0jrH6xLem7F2hDB8EbKjr-Em2qTDQdE-0ZepPznhDCpRxeo7O25YRIQTfIXv8qkIL2-Ki9s7q4GHCcsMYW4IA96BRc2GHwYEqKa6CLu6RnrP0uJlfuZ1xiFZdax0cIJTmzeJ2wfcjTEsxqeIFeTdpnePv4nqO7L9c_rr41N7dfv199vmkMH0RphonLiQIBS7kwUhDDR2Es61kLTMJoOUyjpXpoRwOSW2m4tD2BCUg_EDm15-jTyfewjDNYs06jvTokN-v0oKJ26t9KcPdqF49KyK6eaagGH04GJrlcXFAhJq0oIa1QrOVCVsXHx4gUfy6Qi5pdNuC9DhCXrBgXXddSOqxm_Mks5pxgeh6EErUiVHt1QqhWhIoyVRHWtvd_L_Hc9MTsz5ZQT3l0kFQ2DoIB61KFoGx0_0_4DUKvscE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475531188</pqid></control><display><type>article</type><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</creator><creatorcontrib>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</creatorcontrib><description>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population.
LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population.
Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</description><identifier>ISSN: 0167-5273</identifier><identifier>ISSN: 1874-1754</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2020.12.065</identifier><identifier>PMID: 33400971</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial intelligence ; Basale medisinske, odontologiske og veterinærmedisinske fag: 710 ; Basic medical, dental and veterinary science disciplines: 710 ; Electrocardiogram ; Left ventricular systolic dysfunction ; Machine learning ; Medical disciplines: 700 ; Medisinske Fag: 700 ; VDP</subject><ispartof>International journal of cardiology, 2021-04, Vol.329, p.130-135</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2021 The Authors. Published by Elsevier B.V. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</citedby><cites>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167527320343138$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33400971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Attia, Itzhak Zachi</creatorcontrib><creatorcontrib>Tseng, Andrew S.</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Medina-Inojosa, Jose R.</creatorcontrib><creatorcontrib>Clark, Taane G.</creatorcontrib><creatorcontrib>Malyutina, Sofia</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Schirmer, Henrik</creatorcontrib><creatorcontrib>Kudryavtsev, Alexander V.</creatorcontrib><creatorcontrib>Noseworthy, Peter A.</creatorcontrib><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Ryabikov, Andrew</creatorcontrib><creatorcontrib>Perel, Pablo</creatorcontrib><creatorcontrib>Friedman, Paul A.</creatorcontrib><creatorcontrib>Leon, David A.</creatorcontrib><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><description>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population.
LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population.
Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</description><subject>Artificial intelligence</subject><subject>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</subject><subject>Basic medical, dental and veterinary science disciplines: 710</subject><subject>Electrocardiogram</subject><subject>Left ventricular systolic dysfunction</subject><subject>Machine learning</subject><subject>Medical disciplines: 700</subject><subject>Medisinske Fag: 700</subject><subject>VDP</subject><issn>0167-5273</issn><issn>1874-1754</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kU9v3CAQxVHVqtkm_QZVy7EXbwBjYy6Vqij9I0XKpTkjDOMNKwxbwKvm2xdrk7S99ITEvHlvZn4IvaNkSwntL_dbtzc62S0jrH6xLem7F2hDB8EbKjr-Em2qTDQdE-0ZepPznhDCpRxeo7O25YRIQTfIXv8qkIL2-Ki9s7q4GHCcsMYW4IA96BRc2GHwYEqKa6CLu6RnrP0uJlfuZ1xiFZdax0cIJTmzeJ2wfcjTEsxqeIFeTdpnePv4nqO7L9c_rr41N7dfv199vmkMH0RphonLiQIBS7kwUhDDR2Es61kLTMJoOUyjpXpoRwOSW2m4tD2BCUg_EDm15-jTyfewjDNYs06jvTokN-v0oKJ26t9KcPdqF49KyK6eaagGH04GJrlcXFAhJq0oIa1QrOVCVsXHx4gUfy6Qi5pdNuC9DhCXrBgXXddSOqxm_Mks5pxgeh6EErUiVHt1QqhWhIoyVRHWtvd_L_Hc9MTsz5ZQT3l0kFQ2DoIB61KFoGx0_0_4DUKvscE</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Attia, Itzhak Zachi</creator><creator>Tseng, Andrew S.</creator><creator>Benavente, Ernest Diez</creator><creator>Medina-Inojosa, Jose R.</creator><creator>Clark, Taane G.</creator><creator>Malyutina, Sofia</creator><creator>Kapa, Suraj</creator><creator>Schirmer, Henrik</creator><creator>Kudryavtsev, Alexander V.</creator><creator>Noseworthy, Peter A.</creator><creator>Carter, Rickey E.</creator><creator>Ryabikov, Andrew</creator><creator>Perel, Pablo</creator><creator>Friedman, Paul A.</creator><creator>Leon, David A.</creator><creator>Lopez-Jimenez, Francisco</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope></search><sort><creationdate>20210415</creationdate><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><author>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</topic><topic>Basic medical, dental and veterinary science disciplines: 710</topic><topic>Electrocardiogram</topic><topic>Left ventricular systolic dysfunction</topic><topic>Machine learning</topic><topic>Medical disciplines: 700</topic><topic>Medisinske Fag: 700</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, Itzhak Zachi</creatorcontrib><creatorcontrib>Tseng, Andrew S.</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Medina-Inojosa, Jose R.</creatorcontrib><creatorcontrib>Clark, Taane G.</creatorcontrib><creatorcontrib>Malyutina, Sofia</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Schirmer, Henrik</creatorcontrib><creatorcontrib>Kudryavtsev, Alexander V.</creatorcontrib><creatorcontrib>Noseworthy, Peter A.</creatorcontrib><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Ryabikov, Andrew</creatorcontrib><creatorcontrib>Perel, Pablo</creatorcontrib><creatorcontrib>Friedman, Paul A.</creatorcontrib><creatorcontrib>Leon, David A.</creatorcontrib><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, Itzhak Zachi</au><au>Tseng, Andrew S.</au><au>Benavente, Ernest Diez</au><au>Medina-Inojosa, Jose R.</au><au>Clark, Taane G.</au><au>Malyutina, Sofia</au><au>Kapa, Suraj</au><au>Schirmer, Henrik</au><au>Kudryavtsev, Alexander V.</au><au>Noseworthy, Peter A.</au><au>Carter, Rickey E.</au><au>Ryabikov, Andrew</au><au>Perel, Pablo</au><au>Friedman, Paul A.</au><au>Leon, David A.</au><au>Lopez-Jimenez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>329</volume><spage>130</spage><epage>135</epage><pages>130-135</pages><issn>0167-5273</issn><issn>1874-1754</issn><eissn>1874-1754</eissn><abstract>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population.
LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population.
Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33400971</pmid><doi>10.1016/j.ijcard.2020.12.065</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-5273 |
ispartof | International journal of cardiology, 2021-04, Vol.329, p.130-135 |
issn | 0167-5273 1874-1754 1874-1754 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955278 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals |
subjects | Artificial intelligence Basale medisinske, odontologiske og veterinærmedisinske fag: 710 Basic medical, dental and veterinary science disciplines: 710 Electrocardiogram Left ventricular systolic dysfunction Machine learning Medical disciplines: 700 Medisinske Fag: 700 VDP |
title | External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20validation%20of%20a%20deep%20learning%20electrocardiogram%20algorithm%20to%20detect%20ventricular%20dysfunction&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Attia,%20Itzhak%20Zachi&rft.date=2021-04-15&rft.volume=329&rft.spage=130&rft.epage=135&rft.pages=130-135&rft.issn=0167-5273&rft.eissn=1874-1754&rft_id=info:doi/10.1016/j.ijcard.2020.12.065&rft_dat=%3Cproquest_pubme%3E2475531188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475531188&rft_id=info:pmid/33400971&rft_els_id=S0167527320343138&rfr_iscdi=true |