External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction

To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cardiology 2021-04, Vol.329, p.130-135
Hauptverfasser: Attia, Itzhak Zachi, Tseng, Andrew S., Benavente, Ernest Diez, Medina-Inojosa, Jose R., Clark, Taane G., Malyutina, Sofia, Kapa, Suraj, Schirmer, Henrik, Kudryavtsev, Alexander V., Noseworthy, Peter A., Carter, Rickey E., Ryabikov, Andrew, Perel, Pablo, Friedman, Paul A., Leon, David A., Lopez-Jimenez, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 130
container_title International journal of cardiology
container_volume 329
creator Attia, Itzhak Zachi
Tseng, Andrew S.
Benavente, Ernest Diez
Medina-Inojosa, Jose R.
Clark, Taane G.
Malyutina, Sofia
Kapa, Suraj
Schirmer, Henrik
Kudryavtsev, Alexander V.
Noseworthy, Peter A.
Carter, Rickey E.
Ryabikov, Andrew
Perel, Pablo
Friedman, Paul A.
Leon, David A.
Lopez-Jimenez, Francisco
description To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic. We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population. Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values. The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.
doi_str_mv 10.1016/j.ijcard.2020.12.065
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527320343138</els_id><sourcerecordid>2475531188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</originalsourceid><addsrcrecordid>eNp9kU9v3CAQxVHVqtkm_QZVy7EXbwBjYy6Vqij9I0XKpTkjDOMNKwxbwKvm2xdrk7S99ITEvHlvZn4IvaNkSwntL_dbtzc62S0jrH6xLem7F2hDB8EbKjr-Em2qTDQdE-0ZepPznhDCpRxeo7O25YRIQTfIXv8qkIL2-Ki9s7q4GHCcsMYW4IA96BRc2GHwYEqKa6CLu6RnrP0uJlfuZ1xiFZdax0cIJTmzeJ2wfcjTEsxqeIFeTdpnePv4nqO7L9c_rr41N7dfv199vmkMH0RphonLiQIBS7kwUhDDR2Es61kLTMJoOUyjpXpoRwOSW2m4tD2BCUg_EDm15-jTyfewjDNYs06jvTokN-v0oKJ26t9KcPdqF49KyK6eaagGH04GJrlcXFAhJq0oIa1QrOVCVsXHx4gUfy6Qi5pdNuC9DhCXrBgXXddSOqxm_Mks5pxgeh6EErUiVHt1QqhWhIoyVRHWtvd_L_Hc9MTsz5ZQT3l0kFQ2DoIB61KFoGx0_0_4DUKvscE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475531188</pqid></control><display><type>article</type><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</creator><creatorcontrib>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</creatorcontrib><description>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic. We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population. Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values. The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</description><identifier>ISSN: 0167-5273</identifier><identifier>ISSN: 1874-1754</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2020.12.065</identifier><identifier>PMID: 33400971</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial intelligence ; Basale medisinske, odontologiske og veterinærmedisinske fag: 710 ; Basic medical, dental and veterinary science disciplines: 710 ; Electrocardiogram ; Left ventricular systolic dysfunction ; Machine learning ; Medical disciplines: 700 ; Medisinske Fag: 700 ; VDP</subject><ispartof>International journal of cardiology, 2021-04, Vol.329, p.130-135</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2021 The Authors. Published by Elsevier B.V. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</citedby><cites>FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167527320343138$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33400971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Attia, Itzhak Zachi</creatorcontrib><creatorcontrib>Tseng, Andrew S.</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Medina-Inojosa, Jose R.</creatorcontrib><creatorcontrib>Clark, Taane G.</creatorcontrib><creatorcontrib>Malyutina, Sofia</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Schirmer, Henrik</creatorcontrib><creatorcontrib>Kudryavtsev, Alexander V.</creatorcontrib><creatorcontrib>Noseworthy, Peter A.</creatorcontrib><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Ryabikov, Andrew</creatorcontrib><creatorcontrib>Perel, Pablo</creatorcontrib><creatorcontrib>Friedman, Paul A.</creatorcontrib><creatorcontrib>Leon, David A.</creatorcontrib><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><description>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic. We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population. Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values. The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</description><subject>Artificial intelligence</subject><subject>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</subject><subject>Basic medical, dental and veterinary science disciplines: 710</subject><subject>Electrocardiogram</subject><subject>Left ventricular systolic dysfunction</subject><subject>Machine learning</subject><subject>Medical disciplines: 700</subject><subject>Medisinske Fag: 700</subject><subject>VDP</subject><issn>0167-5273</issn><issn>1874-1754</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kU9v3CAQxVHVqtkm_QZVy7EXbwBjYy6Vqij9I0XKpTkjDOMNKwxbwKvm2xdrk7S99ITEvHlvZn4IvaNkSwntL_dbtzc62S0jrH6xLem7F2hDB8EbKjr-Em2qTDQdE-0ZepPznhDCpRxeo7O25YRIQTfIXv8qkIL2-Ki9s7q4GHCcsMYW4IA96BRc2GHwYEqKa6CLu6RnrP0uJlfuZ1xiFZdax0cIJTmzeJ2wfcjTEsxqeIFeTdpnePv4nqO7L9c_rr41N7dfv199vmkMH0RphonLiQIBS7kwUhDDR2Es61kLTMJoOUyjpXpoRwOSW2m4tD2BCUg_EDm15-jTyfewjDNYs06jvTokN-v0oKJ26t9KcPdqF49KyK6eaagGH04GJrlcXFAhJq0oIa1QrOVCVsXHx4gUfy6Qi5pdNuC9DhCXrBgXXddSOqxm_Mks5pxgeh6EErUiVHt1QqhWhIoyVRHWtvd_L_Hc9MTsz5ZQT3l0kFQ2DoIB61KFoGx0_0_4DUKvscE</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Attia, Itzhak Zachi</creator><creator>Tseng, Andrew S.</creator><creator>Benavente, Ernest Diez</creator><creator>Medina-Inojosa, Jose R.</creator><creator>Clark, Taane G.</creator><creator>Malyutina, Sofia</creator><creator>Kapa, Suraj</creator><creator>Schirmer, Henrik</creator><creator>Kudryavtsev, Alexander V.</creator><creator>Noseworthy, Peter A.</creator><creator>Carter, Rickey E.</creator><creator>Ryabikov, Andrew</creator><creator>Perel, Pablo</creator><creator>Friedman, Paul A.</creator><creator>Leon, David A.</creator><creator>Lopez-Jimenez, Francisco</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope></search><sort><creationdate>20210415</creationdate><title>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</title><author>Attia, Itzhak Zachi ; Tseng, Andrew S. ; Benavente, Ernest Diez ; Medina-Inojosa, Jose R. ; Clark, Taane G. ; Malyutina, Sofia ; Kapa, Suraj ; Schirmer, Henrik ; Kudryavtsev, Alexander V. ; Noseworthy, Peter A. ; Carter, Rickey E. ; Ryabikov, Andrew ; Perel, Pablo ; Friedman, Paul A. ; Leon, David A. ; Lopez-Jimenez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-8f49f1e0ed147c970c4b7cd2623e29ebd4efbd1a83bce94d9c49d60efe06809f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</topic><topic>Basic medical, dental and veterinary science disciplines: 710</topic><topic>Electrocardiogram</topic><topic>Left ventricular systolic dysfunction</topic><topic>Machine learning</topic><topic>Medical disciplines: 700</topic><topic>Medisinske Fag: 700</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, Itzhak Zachi</creatorcontrib><creatorcontrib>Tseng, Andrew S.</creatorcontrib><creatorcontrib>Benavente, Ernest Diez</creatorcontrib><creatorcontrib>Medina-Inojosa, Jose R.</creatorcontrib><creatorcontrib>Clark, Taane G.</creatorcontrib><creatorcontrib>Malyutina, Sofia</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Schirmer, Henrik</creatorcontrib><creatorcontrib>Kudryavtsev, Alexander V.</creatorcontrib><creatorcontrib>Noseworthy, Peter A.</creatorcontrib><creatorcontrib>Carter, Rickey E.</creatorcontrib><creatorcontrib>Ryabikov, Andrew</creatorcontrib><creatorcontrib>Perel, Pablo</creatorcontrib><creatorcontrib>Friedman, Paul A.</creatorcontrib><creatorcontrib>Leon, David A.</creatorcontrib><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, Itzhak Zachi</au><au>Tseng, Andrew S.</au><au>Benavente, Ernest Diez</au><au>Medina-Inojosa, Jose R.</au><au>Clark, Taane G.</au><au>Malyutina, Sofia</au><au>Kapa, Suraj</au><au>Schirmer, Henrik</au><au>Kudryavtsev, Alexander V.</au><au>Noseworthy, Peter A.</au><au>Carter, Rickey E.</au><au>Ryabikov, Andrew</au><au>Perel, Pablo</au><au>Friedman, Paul A.</au><au>Leon, David A.</au><au>Lopez-Jimenez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>329</volume><spage>130</spage><epage>135</epage><pages>130-135</pages><issn>0167-5273</issn><issn>1874-1754</issn><eissn>1874-1754</eissn><abstract>To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population. LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic. We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population. Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values. The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33400971</pmid><doi>10.1016/j.ijcard.2020.12.065</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-5273
ispartof International journal of cardiology, 2021-04, Vol.329, p.130-135
issn 0167-5273
1874-1754
1874-1754
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955278
source NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
subjects Artificial intelligence
Basale medisinske, odontologiske og veterinærmedisinske fag: 710
Basic medical, dental and veterinary science disciplines: 710
Electrocardiogram
Left ventricular systolic dysfunction
Machine learning
Medical disciplines: 700
Medisinske Fag: 700
VDP
title External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20validation%20of%20a%20deep%20learning%20electrocardiogram%20algorithm%20to%20detect%20ventricular%20dysfunction&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Attia,%20Itzhak%20Zachi&rft.date=2021-04-15&rft.volume=329&rft.spage=130&rft.epage=135&rft.pages=130-135&rft.issn=0167-5273&rft.eissn=1874-1754&rft_id=info:doi/10.1016/j.ijcard.2020.12.065&rft_dat=%3Cproquest_pubme%3E2475531188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475531188&rft_id=info:pmid/33400971&rft_els_id=S0167527320343138&rfr_iscdi=true