The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets

Abstract Background The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2021-03, Vol.10 (3)
Hauptverfasser: Beale, Holly C, Roger, Jacquelyn M, Cattle, Matthew A, McKay, Liam T, Thompson, Drew K A, Learned, Katrina, Lyle, A Geoffrey, Kephart, Ellen T, Currie, Rob, Lam, Du Linh, Sanders, Lauren, Pfeil, Jacob, Vivian, John, Bjork, Isabel, Salama, Sofie R, Haussler, David, Vaske, Olena M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Gigascience
container_volume 10
creator Beale, Holly C
Roger, Jacquelyn M
Cattle, Matthew A
McKay, Liam T
Thompson, Drew K A
Learned, Katrina
Lyle, A Geoffrey
Kephart, Ellen T
Currie, Rob
Lam, Du Linh
Sanders, Lauren
Pfeil, Jacob
Vivian, John
Bjork, Isabel
Salama, Sofie R
Haussler, David
Vaske, Olena M
description Abstract Background The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic, non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis. Findings In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1–77% of all reads (median [IQR], 3% [3–6%]); duplicate reads constitute 3–100% of mapped reads (median [IQR], 27% [13–43%]); and non-exonic reads constitute 4–97% of mapped, non-duplicate reads (median [IQR], 25% [16–37%]). MEND reads constitute 0–79% of total reads (median [IQR], 50% [30–61%]). Conclusions Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset's sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total, mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.
doi_str_mv 10.1093/gigascience/giab011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giab011</oup_id><sourcerecordid>2715816121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-b7b322d663e9f050744398d7f357a6a0e6d1d458fcf0a2d65c6974934d46e2a3</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVpaEKSX1Aogm66caqHZdldFELoC0IDYRbdiTvS9YyCLbmS3cey_7waZhqmXVUbXaHvnHsvh5DnnF1x1snXG7-BbD0Gi6WGNeP8CTkTrNaV4PrL06P6lFzm_MDK0bpttXxGTqXUXLRKnpFfqy1SCxlpHxNdsg8bOsI0oaP4IwZvaYihcss0eAsz0oTgMv2-xVDKKaZ5J7j_fF1l_LqUaXZPh9O8fVP0ME4DZtqnONLi6GFOxdBCGTpRB3NpO-cLctLDkPHycJ-T1ft3q5uP1e3dh08317eVrbWYq7VeSyFc00jseqaYrmvZtU73UmlogGHjuKtV29ueQeGUbTpdd7J2dYMC5Dl5u7edlvWIzmKYEwxmSn6E9NNE8Obvn-C3ZhO_Gd0pxZUqBq8OBimWVfNsRp8tDgMEjEs2QjEuGtVpXdCX_6APcUmhbGeE5qrlDRe8UHJP2RRzTtg_DsOZ2YVsjkI2h5CL6sXxHo-aP5EW4GoPxGX6L8ffARG5rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715816121</pqid></control><display><type>article</type><title>The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Beale, Holly C ; Roger, Jacquelyn M ; Cattle, Matthew A ; McKay, Liam T ; Thompson, Drew K A ; Learned, Katrina ; Lyle, A Geoffrey ; Kephart, Ellen T ; Currie, Rob ; Lam, Du Linh ; Sanders, Lauren ; Pfeil, Jacob ; Vivian, John ; Bjork, Isabel ; Salama, Sofie R ; Haussler, David ; Vaske, Olena M</creator><creatorcontrib>Beale, Holly C ; Roger, Jacquelyn M ; Cattle, Matthew A ; McKay, Liam T ; Thompson, Drew K A ; Learned, Katrina ; Lyle, A Geoffrey ; Kephart, Ellen T ; Currie, Rob ; Lam, Du Linh ; Sanders, Lauren ; Pfeil, Jacob ; Vivian, John ; Bjork, Isabel ; Salama, Sofie R ; Haussler, David ; Vaske, Olena M</creatorcontrib><description>Abstract Background The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic, non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis. Findings In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1–77% of all reads (median [IQR], 3% [3–6%]); duplicate reads constitute 3–100% of mapped reads (median [IQR], 27% [13–43%]); and non-exonic reads constitute 4–97% of mapped, non-duplicate reads (median [IQR], 25% [16–37%]). MEND reads constitute 0–79% of total reads (median [IQR], 50% [30–61%]). Conclusions Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset's sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total, mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giab011</identifier><identifier>PMID: 33712853</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Child ; Datasets ; Exome Sequencing ; Gene expression ; Gene Expression Profiling ; Gene sequencing ; High-Throughput Nucleotide Sequencing ; Humans ; Neoplasms - genetics ; Pediatrics ; Reproducibility ; Reproducibility of Results ; Reproduction (copying) ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA ; Technical Note ; Tumors</subject><ispartof>Gigascience, 2021-03, Vol.10 (3)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press GigaScience. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-b7b322d663e9f050744398d7f357a6a0e6d1d458fcf0a2d65c6974934d46e2a3</citedby><cites>FETCH-LOGICAL-c472t-b7b322d663e9f050744398d7f357a6a0e6d1d458fcf0a2d65c6974934d46e2a3</cites><orcidid>0000-0003-1828-1827 ; 0000-0003-4091-538X ; 0000-0002-1677-417X ; 0000-0001-6999-7193 ; 0000-0001-9762-4298 ; 0000-0003-3112-7525 ; 0000-0002-3435-526X ; 0000-0003-1533-4575 ; 0000-0003-0809-1245 ; 0000-0002-4778-7723 ; 0000-0002-8773-8520 ; 0000-0003-1823-0421 ; 0000-0002-7985-6869 ; 0000-0001-9393-0861 ; 0000-0002-3117-4439 ; 0000-0002-9425-6976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955155/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955155/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33712853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beale, Holly C</creatorcontrib><creatorcontrib>Roger, Jacquelyn M</creatorcontrib><creatorcontrib>Cattle, Matthew A</creatorcontrib><creatorcontrib>McKay, Liam T</creatorcontrib><creatorcontrib>Thompson, Drew K A</creatorcontrib><creatorcontrib>Learned, Katrina</creatorcontrib><creatorcontrib>Lyle, A Geoffrey</creatorcontrib><creatorcontrib>Kephart, Ellen T</creatorcontrib><creatorcontrib>Currie, Rob</creatorcontrib><creatorcontrib>Lam, Du Linh</creatorcontrib><creatorcontrib>Sanders, Lauren</creatorcontrib><creatorcontrib>Pfeil, Jacob</creatorcontrib><creatorcontrib>Vivian, John</creatorcontrib><creatorcontrib>Bjork, Isabel</creatorcontrib><creatorcontrib>Salama, Sofie R</creatorcontrib><creatorcontrib>Haussler, David</creatorcontrib><creatorcontrib>Vaske, Olena M</creatorcontrib><title>The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Background The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic, non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis. Findings In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1–77% of all reads (median [IQR], 3% [3–6%]); duplicate reads constitute 3–100% of mapped reads (median [IQR], 27% [13–43%]); and non-exonic reads constitute 4–97% of mapped, non-duplicate reads (median [IQR], 25% [16–37%]). MEND reads constitute 0–79% of total reads (median [IQR], 50% [30–61%]). Conclusions Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset's sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total, mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.</description><subject>Child</subject><subject>Datasets</subject><subject>Exome Sequencing</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Pediatrics</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Reproduction (copying)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA</subject><subject>Technical Note</subject><subject>Tumors</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAUhUVpaEKSX1Aogm66caqHZdldFELoC0IDYRbdiTvS9YyCLbmS3cey_7waZhqmXVUbXaHvnHsvh5DnnF1x1snXG7-BbD0Gi6WGNeP8CTkTrNaV4PrL06P6lFzm_MDK0bpttXxGTqXUXLRKnpFfqy1SCxlpHxNdsg8bOsI0oaP4IwZvaYihcss0eAsz0oTgMv2-xVDKKaZ5J7j_fF1l_LqUaXZPh9O8fVP0ME4DZtqnONLi6GFOxdBCGTpRB3NpO-cLctLDkPHycJ-T1ft3q5uP1e3dh08317eVrbWYq7VeSyFc00jseqaYrmvZtU73UmlogGHjuKtV29ueQeGUbTpdd7J2dYMC5Dl5u7edlvWIzmKYEwxmSn6E9NNE8Obvn-C3ZhO_Gd0pxZUqBq8OBimWVfNsRp8tDgMEjEs2QjEuGtVpXdCX_6APcUmhbGeE5qrlDRe8UHJP2RRzTtg_DsOZ2YVsjkI2h5CL6sXxHo-aP5EW4GoPxGX6L8ffARG5rg</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Beale, Holly C</creator><creator>Roger, Jacquelyn M</creator><creator>Cattle, Matthew A</creator><creator>McKay, Liam T</creator><creator>Thompson, Drew K A</creator><creator>Learned, Katrina</creator><creator>Lyle, A Geoffrey</creator><creator>Kephart, Ellen T</creator><creator>Currie, Rob</creator><creator>Lam, Du Linh</creator><creator>Sanders, Lauren</creator><creator>Pfeil, Jacob</creator><creator>Vivian, John</creator><creator>Bjork, Isabel</creator><creator>Salama, Sofie R</creator><creator>Haussler, David</creator><creator>Vaske, Olena M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1828-1827</orcidid><orcidid>https://orcid.org/0000-0003-4091-538X</orcidid><orcidid>https://orcid.org/0000-0002-1677-417X</orcidid><orcidid>https://orcid.org/0000-0001-6999-7193</orcidid><orcidid>https://orcid.org/0000-0001-9762-4298</orcidid><orcidid>https://orcid.org/0000-0003-3112-7525</orcidid><orcidid>https://orcid.org/0000-0002-3435-526X</orcidid><orcidid>https://orcid.org/0000-0003-1533-4575</orcidid><orcidid>https://orcid.org/0000-0003-0809-1245</orcidid><orcidid>https://orcid.org/0000-0002-4778-7723</orcidid><orcidid>https://orcid.org/0000-0002-8773-8520</orcidid><orcidid>https://orcid.org/0000-0003-1823-0421</orcidid><orcidid>https://orcid.org/0000-0002-7985-6869</orcidid><orcidid>https://orcid.org/0000-0001-9393-0861</orcidid><orcidid>https://orcid.org/0000-0002-3117-4439</orcidid><orcidid>https://orcid.org/0000-0002-9425-6976</orcidid></search><sort><creationdate>20210313</creationdate><title>The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets</title><author>Beale, Holly C ; Roger, Jacquelyn M ; Cattle, Matthew A ; McKay, Liam T ; Thompson, Drew K A ; Learned, Katrina ; Lyle, A Geoffrey ; Kephart, Ellen T ; Currie, Rob ; Lam, Du Linh ; Sanders, Lauren ; Pfeil, Jacob ; Vivian, John ; Bjork, Isabel ; Salama, Sofie R ; Haussler, David ; Vaske, Olena M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-b7b322d663e9f050744398d7f357a6a0e6d1d458fcf0a2d65c6974934d46e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Child</topic><topic>Datasets</topic><topic>Exome Sequencing</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Pediatrics</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Reproduction (copying)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA</topic><topic>Technical Note</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beale, Holly C</creatorcontrib><creatorcontrib>Roger, Jacquelyn M</creatorcontrib><creatorcontrib>Cattle, Matthew A</creatorcontrib><creatorcontrib>McKay, Liam T</creatorcontrib><creatorcontrib>Thompson, Drew K A</creatorcontrib><creatorcontrib>Learned, Katrina</creatorcontrib><creatorcontrib>Lyle, A Geoffrey</creatorcontrib><creatorcontrib>Kephart, Ellen T</creatorcontrib><creatorcontrib>Currie, Rob</creatorcontrib><creatorcontrib>Lam, Du Linh</creatorcontrib><creatorcontrib>Sanders, Lauren</creatorcontrib><creatorcontrib>Pfeil, Jacob</creatorcontrib><creatorcontrib>Vivian, John</creatorcontrib><creatorcontrib>Bjork, Isabel</creatorcontrib><creatorcontrib>Salama, Sofie R</creatorcontrib><creatorcontrib>Haussler, David</creatorcontrib><creatorcontrib>Vaske, Olena M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beale, Holly C</au><au>Roger, Jacquelyn M</au><au>Cattle, Matthew A</au><au>McKay, Liam T</au><au>Thompson, Drew K A</au><au>Learned, Katrina</au><au>Lyle, A Geoffrey</au><au>Kephart, Ellen T</au><au>Currie, Rob</au><au>Lam, Du Linh</au><au>Sanders, Lauren</au><au>Pfeil, Jacob</au><au>Vivian, John</au><au>Bjork, Isabel</au><au>Salama, Sofie R</au><au>Haussler, David</au><au>Vaske, Olena M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Background The reproducibility of gene expression measured by RNA sequencing (RNA-Seq) is dependent on the sequencing depth. While unmapped or non-exonic reads do not contribute to gene expression quantification, duplicate reads contribute to the quantification but are not informative for reproducibility. We show that mapped, exonic, non-duplicate (MEND) reads are a useful measure of reproducibility of RNA-Seq datasets used for gene expression analysis. Findings In bulk RNA-Seq datasets from 2,179 tumors in 48 cohorts, the fraction of reads that contribute to the reproducibility of gene expression analysis varies greatly. Unmapped reads constitute 1–77% of all reads (median [IQR], 3% [3–6%]); duplicate reads constitute 3–100% of mapped reads (median [IQR], 27% [13–43%]); and non-exonic reads constitute 4–97% of mapped, non-duplicate reads (median [IQR], 25% [16–37%]). MEND reads constitute 0–79% of total reads (median [IQR], 50% [30–61%]). Conclusions Because not all reads in an RNA-Seq dataset are informative for reproducibility of gene expression measurements and the fraction of reads that are informative varies, we propose reporting a dataset's sequencing depth in MEND reads, which definitively inform the reproducibility of gene expression, rather than total, mapped, or exonic reads. We provide a Docker image containing (i) the existing required tools (RSeQC, sambamba, and samblaster) and (ii) a custom script to calculate MEND reads from RNA-Seq data files. We recommend that all RNA-Seq gene expression experiments, sensitivity studies, and depth recommendations use MEND units for sequencing depth.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33712853</pmid><doi>10.1093/gigascience/giab011</doi><orcidid>https://orcid.org/0000-0003-1828-1827</orcidid><orcidid>https://orcid.org/0000-0003-4091-538X</orcidid><orcidid>https://orcid.org/0000-0002-1677-417X</orcidid><orcidid>https://orcid.org/0000-0001-6999-7193</orcidid><orcidid>https://orcid.org/0000-0001-9762-4298</orcidid><orcidid>https://orcid.org/0000-0003-3112-7525</orcidid><orcidid>https://orcid.org/0000-0002-3435-526X</orcidid><orcidid>https://orcid.org/0000-0003-1533-4575</orcidid><orcidid>https://orcid.org/0000-0003-0809-1245</orcidid><orcidid>https://orcid.org/0000-0002-4778-7723</orcidid><orcidid>https://orcid.org/0000-0002-8773-8520</orcidid><orcidid>https://orcid.org/0000-0003-1823-0421</orcidid><orcidid>https://orcid.org/0000-0002-7985-6869</orcidid><orcidid>https://orcid.org/0000-0001-9393-0861</orcidid><orcidid>https://orcid.org/0000-0002-3117-4439</orcidid><orcidid>https://orcid.org/0000-0002-9425-6976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2021-03, Vol.10 (3)
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7955155
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Child
Datasets
Exome Sequencing
Gene expression
Gene Expression Profiling
Gene sequencing
High-Throughput Nucleotide Sequencing
Humans
Neoplasms - genetics
Pediatrics
Reproducibility
Reproducibility of Results
Reproduction (copying)
Ribonucleic acid
RNA
Sequence Analysis, RNA
Technical Note
Tumors
title The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20case%20for%20using%20mapped%20exonic%20non-duplicate%20reads%20when%20reporting%20RNA-sequencing%20depth:%20examples%20from%20pediatric%20cancer%20datasets&rft.jtitle=Gigascience&rft.au=Beale,%20Holly%20C&rft.date=2021-03-13&rft.volume=10&rft.issue=3&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giab011&rft_dat=%3Cproquest_pubme%3E2715816121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715816121&rft_id=info:pmid/33712853&rft_oup_id=10.1093/gigascience/giab011&rfr_iscdi=true