KCC2 is required for the survival of mature neurons but not for their development
The K+/Cl− cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl− levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-01, Vol.296, p.100364, Article 100364 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100364 |
container_title | The Journal of biological chemistry |
container_volume | 296 |
creator | Kontou, Georgina Josephine Ng, Shu Fun Cardarelli, Ross A. Howden, Jack H. Choi, Catherine Ren, Qiu Rodriguez Santos, Miguel A. Bope, Christopher E. Dengler, Jake S. Kelley, Matt R. Davies, Paul A. Kittler, Josef T. Brandon, Nicholas J. Moss, Stephen J. Smalley, Joshua L. |
description | The K+/Cl− cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl− levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture. |
doi_str_mv | 10.1016/j.jbc.2021.100364 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7949141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821001368</els_id><sourcerecordid>S0021925821001368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1e01c8e1f9ed0a30cea25c793de2319c5f2209c3d8112affcd61dd4a3c839df73</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWqsP4I3kBbZmkt12gyBI8Q8LIih4F9Jkointpia7C769kWrRG-dmGOacM8xHyAmwETAYny1Gi7kZccYhz0yMyx0yAFaLQlTwsksGLG8Kyav6gBymtGC5Sgn75ECISkgJ9YA83k-nnPpEI753PqKlLkTaviFNXex9r5c0OLrSbReRNtjF0CQ671rahPZH6iO12OMyrFfYtEdkz-llwuPvPiTP11dP09ti9nBzN72cFaasoC0AGZgawUm0TAtmUPPKTKSwyAVIUznOmTTC1gBcO2fsGKwttTC1kNZNxJBcbHLX3XyF1uTTUS_VOvqVjh8qaK_-bhr_pl5DryYyQyghB8AmwMSQUkS39QJTX3zVQmW-6ouv2vDNntPfR7eOH6BZcL4RYH699xhVMh4bgzbDNa2ywf8T_wm9Yo0_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>KCC2 is required for the survival of mature neurons but not for their development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kontou, Georgina ; Josephine Ng, Shu Fun ; Cardarelli, Ross A. ; Howden, Jack H. ; Choi, Catherine ; Ren, Qiu ; Rodriguez Santos, Miguel A. ; Bope, Christopher E. ; Dengler, Jake S. ; Kelley, Matt R. ; Davies, Paul A. ; Kittler, Josef T. ; Brandon, Nicholas J. ; Moss, Stephen J. ; Smalley, Joshua L.</creator><creatorcontrib>Kontou, Georgina ; Josephine Ng, Shu Fun ; Cardarelli, Ross A. ; Howden, Jack H. ; Choi, Catherine ; Ren, Qiu ; Rodriguez Santos, Miguel A. ; Bope, Christopher E. ; Dengler, Jake S. ; Kelley, Matt R. ; Davies, Paul A. ; Kittler, Josef T. ; Brandon, Nicholas J. ; Moss, Stephen J. ; Smalley, Joshua L.</creatorcontrib><description>The K+/Cl− cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl− levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.100364</identifier><identifier>PMID: 33539918</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; cell death ; Chlorides - metabolism ; extrinsic pathway ; Female ; gamma-Aminobutyric Acid - metabolism ; K Cl- Cotransporters ; KCC2 ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurogenesis - drug effects ; Neurons - metabolism ; Neurons - physiology ; Potassium - metabolism ; Primary Cell Culture ; Receptors, GABA - metabolism ; Seizures ; Symporters - metabolism ; Symporters - physiology</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100364, Article 100364</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1e01c8e1f9ed0a30cea25c793de2319c5f2209c3d8112affcd61dd4a3c839df73</citedby><cites>FETCH-LOGICAL-c451t-1e01c8e1f9ed0a30cea25c793de2319c5f2209c3d8112affcd61dd4a3c839df73</cites><orcidid>0000-0002-3437-9456 ; 0000-0002-3215-9601 ; 0000-0002-7437-6655 ; 0000-0001-9303-2076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949141/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949141/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33539918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kontou, Georgina</creatorcontrib><creatorcontrib>Josephine Ng, Shu Fun</creatorcontrib><creatorcontrib>Cardarelli, Ross A.</creatorcontrib><creatorcontrib>Howden, Jack H.</creatorcontrib><creatorcontrib>Choi, Catherine</creatorcontrib><creatorcontrib>Ren, Qiu</creatorcontrib><creatorcontrib>Rodriguez Santos, Miguel A.</creatorcontrib><creatorcontrib>Bope, Christopher E.</creatorcontrib><creatorcontrib>Dengler, Jake S.</creatorcontrib><creatorcontrib>Kelley, Matt R.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Kittler, Josef T.</creatorcontrib><creatorcontrib>Brandon, Nicholas J.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Smalley, Joshua L.</creatorcontrib><title>KCC2 is required for the survival of mature neurons but not for their development</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The K+/Cl− cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl− levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>cell death</subject><subject>Chlorides - metabolism</subject><subject>extrinsic pathway</subject><subject>Female</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>K Cl- Cotransporters</subject><subject>KCC2</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurogenesis - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Potassium - metabolism</subject><subject>Primary Cell Culture</subject><subject>Receptors, GABA - metabolism</subject><subject>Seizures</subject><subject>Symporters - metabolism</subject><subject>Symporters - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1KAzEQhYMoWqsP4I3kBbZmkt12gyBI8Q8LIih4F9Jkointpia7C769kWrRG-dmGOacM8xHyAmwETAYny1Gi7kZccYhz0yMyx0yAFaLQlTwsksGLG8Kyav6gBymtGC5Sgn75ECISkgJ9YA83k-nnPpEI753PqKlLkTaviFNXex9r5c0OLrSbReRNtjF0CQ671rahPZH6iO12OMyrFfYtEdkz-llwuPvPiTP11dP09ti9nBzN72cFaasoC0AGZgawUm0TAtmUPPKTKSwyAVIUznOmTTC1gBcO2fsGKwttTC1kNZNxJBcbHLX3XyF1uTTUS_VOvqVjh8qaK_-bhr_pl5DryYyQyghB8AmwMSQUkS39QJTX3zVQmW-6ouv2vDNntPfR7eOH6BZcL4RYH699xhVMh4bgzbDNa2ywf8T_wm9Yo0_</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kontou, Georgina</creator><creator>Josephine Ng, Shu Fun</creator><creator>Cardarelli, Ross A.</creator><creator>Howden, Jack H.</creator><creator>Choi, Catherine</creator><creator>Ren, Qiu</creator><creator>Rodriguez Santos, Miguel A.</creator><creator>Bope, Christopher E.</creator><creator>Dengler, Jake S.</creator><creator>Kelley, Matt R.</creator><creator>Davies, Paul A.</creator><creator>Kittler, Josef T.</creator><creator>Brandon, Nicholas J.</creator><creator>Moss, Stephen J.</creator><creator>Smalley, Joshua L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3437-9456</orcidid><orcidid>https://orcid.org/0000-0002-3215-9601</orcidid><orcidid>https://orcid.org/0000-0002-7437-6655</orcidid><orcidid>https://orcid.org/0000-0001-9303-2076</orcidid></search><sort><creationdate>20210101</creationdate><title>KCC2 is required for the survival of mature neurons but not for their development</title><author>Kontou, Georgina ; Josephine Ng, Shu Fun ; Cardarelli, Ross A. ; Howden, Jack H. ; Choi, Catherine ; Ren, Qiu ; Rodriguez Santos, Miguel A. ; Bope, Christopher E. ; Dengler, Jake S. ; Kelley, Matt R. ; Davies, Paul A. ; Kittler, Josef T. ; Brandon, Nicholas J. ; Moss, Stephen J. ; Smalley, Joshua L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1e01c8e1f9ed0a30cea25c793de2319c5f2209c3d8112affcd61dd4a3c839df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>cell death</topic><topic>Chlorides - metabolism</topic><topic>extrinsic pathway</topic><topic>Female</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>K Cl- Cotransporters</topic><topic>KCC2</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurogenesis - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Potassium - metabolism</topic><topic>Primary Cell Culture</topic><topic>Receptors, GABA - metabolism</topic><topic>Seizures</topic><topic>Symporters - metabolism</topic><topic>Symporters - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontou, Georgina</creatorcontrib><creatorcontrib>Josephine Ng, Shu Fun</creatorcontrib><creatorcontrib>Cardarelli, Ross A.</creatorcontrib><creatorcontrib>Howden, Jack H.</creatorcontrib><creatorcontrib>Choi, Catherine</creatorcontrib><creatorcontrib>Ren, Qiu</creatorcontrib><creatorcontrib>Rodriguez Santos, Miguel A.</creatorcontrib><creatorcontrib>Bope, Christopher E.</creatorcontrib><creatorcontrib>Dengler, Jake S.</creatorcontrib><creatorcontrib>Kelley, Matt R.</creatorcontrib><creatorcontrib>Davies, Paul A.</creatorcontrib><creatorcontrib>Kittler, Josef T.</creatorcontrib><creatorcontrib>Brandon, Nicholas J.</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Smalley, Joshua L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontou, Georgina</au><au>Josephine Ng, Shu Fun</au><au>Cardarelli, Ross A.</au><au>Howden, Jack H.</au><au>Choi, Catherine</au><au>Ren, Qiu</au><au>Rodriguez Santos, Miguel A.</au><au>Bope, Christopher E.</au><au>Dengler, Jake S.</au><au>Kelley, Matt R.</au><au>Davies, Paul A.</au><au>Kittler, Josef T.</au><au>Brandon, Nicholas J.</au><au>Moss, Stephen J.</au><au>Smalley, Joshua L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KCC2 is required for the survival of mature neurons but not for their development</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100364</spage><pages>100364-</pages><artnum>100364</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The K+/Cl− cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl− levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33539918</pmid><doi>10.1016/j.jbc.2021.100364</doi><orcidid>https://orcid.org/0000-0002-3437-9456</orcidid><orcidid>https://orcid.org/0000-0002-3215-9601</orcidid><orcidid>https://orcid.org/0000-0002-7437-6655</orcidid><orcidid>https://orcid.org/0000-0001-9303-2076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2021-01, Vol.296, p.100364, Article 100364 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7949141 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Apoptosis cell death Chlorides - metabolism extrinsic pathway Female gamma-Aminobutyric Acid - metabolism K Cl- Cotransporters KCC2 Male Mice Mice, Inbred C57BL Mice, Knockout Neurogenesis - drug effects Neurons - metabolism Neurons - physiology Potassium - metabolism Primary Cell Culture Receptors, GABA - metabolism Seizures Symporters - metabolism Symporters - physiology |
title | KCC2 is required for the survival of mature neurons but not for their development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KCC2%20is%20required%20for%20the%20survival%20of%20mature%20neurons%20but%20not%20for%20their%20development&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kontou,%20Georgina&rft.date=2021-01-01&rft.volume=296&rft.spage=100364&rft.pages=100364-&rft.artnum=100364&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.100364&rft_dat=%3Celsevier_pubme%3ES0021925821001368%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33539918&rft_els_id=S0021925821001368&rfr_iscdi=true |