The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression
Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor involved in many physiological functions including embryonic development and immune responses and is often activated under pathological conditions such as cancer. Strategies to inactivate STAT3 are being...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-01, Vol.296, p.100220, Article 100220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor involved in many physiological functions including embryonic development and immune responses and is often activated under pathological conditions such as cancer. Strategies to inactivate STAT3 are being pursued as potential anticancer therapies and have led to the identification of Stattic (6-nitrobenzo[b]thiophene-1,1-dioxide) as a “specific” STAT3 inhibitor that is often used to interrogate STAT3-mediated gene expression in vitro and in vivo. Here, we show that Stattic exerts many STAT3-independent effects on cancer cells, calling for reassessment of results previously ascribed to STAT3 functions. Studies of the STAT3-deficient prostate cancer cell line PC-3 (PC3) along with STAT3-proficient breast cancer cell lines (MDA-MB-231, SUM149) revealed that Stattic attenuated histone acetylation and neutralized effects of the histone deacetylase (HDAC) inhibitor romidepsin. In PC3 cells, Stattic alone inhibited gene expression of CCL20 and CCL2, but activated expression of TNFA, CEBPD, SOX2, and MYC. In addition, we found that Stattic promoted autophagy and caused cell death. These data point to profound epigenetic effects of Stattic that are independent of its function as a STAT3 inhibitor. Our results demonstrate that Stattic directly or indirectly reduces histone acetylation and suggest reevaluation of Stattic and related compounds as polypharmacological agents through multipronged cytotoxic effects on cancer cells. |
---|---|
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1074/jbc.RA120.016645 |