Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1
Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-01, Vol.296, p.100251, Article 100251 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100251 |
container_title | The Journal of biological chemistry |
container_volume | 296 |
creator | Ryan, Kevin Bolaňos, Ben Smith, Marissa Palde, Prakash B. Cuenca, Paulina Delgado VanArsdale, Todd L. Niessen, Sherry Zhang, Lianglin Behenna, Douglas Ornelas, Martha A. Tran, Khanh T. Kaiser, Stephen Lum, Lawrence Stewart, Al Gajiwala, Ketan S. |
description | Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers. |
doi_str_mv | 10.1074/jbc.RA120.016573 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821000181</els_id><sourcerecordid>S0021925821000181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</originalsourceid><addsrcrecordid>eNp1kEtLAzEYRYMotj72riR_YGpeM5NxIZT6BMEiCi6EkEkyNnWaKUla6L83dVR0YTYh5N7z8R0ATjAaYVSys3mtRo9jTNAI4SIv6Q4YYsRpRnP8sguGCBGcVSTnA3AQwhylwyq8DwaU0gInwhC8XtoQjIrWvcE4M3DRtUatWumhNtH4hXXSxQC7BqrWOqtkC6fjxymG1s1sbWPnYTDtFrC2cQOb9I7SvW-8DAYfgb1GtsEcf92H4Pn66mlym90_3NxNxveZYqyMGdes5jgvuGRFU2tdVbTJleQV16omSJYII0ZyVTOea6prrgtCkKJIE1UQWdFDcNFzl6t6YbQyLnrZiqW3C-k3opNW_P1xdibeurUoK8YLxhMA9QDluxC8aX66GImtaZFMi0_TojedKqe_Z_4UvtWmwHkfMGnztTVeBGWNU0Zbn3wJ3dn_6R-dwJBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</creator><creatorcontrib>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</creatorcontrib><description>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.016573</identifier><identifier>PMID: 33361107</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>anticancer drug ; Antineoplastic Agents - pharmacology ; Benzimidazoles - pharmacology ; Binding Sites - drug effects ; Breast Neoplasms - drug therapy ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; crystal structure ; DNA Damage - drug effects ; DNA Repair - genetics ; drug design ; Female ; Humans ; hydrogen-deuterium exchange ; Indazoles - pharmacology ; Ligands ; niraparib ; olaparib ; PARP1 ; Phthalazines - pharmacology ; Piperidines - pharmacology ; Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors ; Poly (ADP-Ribose) Polymerase-1 - genetics ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; protein–ligand interaction ; surface plasmon resonance (SPR) ; talazoparib ; tankyrase1 ; Tankyrases - genetics ; veliparib ; Wnt Signaling Pathway - drug effects</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100251, Article 100251</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 THE AUTHORS 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</citedby><cites>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</cites><orcidid>0000-0003-0338-2529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948648/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948648/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33361107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Kevin</creatorcontrib><creatorcontrib>Bolaňos, Ben</creatorcontrib><creatorcontrib>Smith, Marissa</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Cuenca, Paulina Delgado</creatorcontrib><creatorcontrib>VanArsdale, Todd L.</creatorcontrib><creatorcontrib>Niessen, Sherry</creatorcontrib><creatorcontrib>Zhang, Lianglin</creatorcontrib><creatorcontrib>Behenna, Douglas</creatorcontrib><creatorcontrib>Ornelas, Martha A.</creatorcontrib><creatorcontrib>Tran, Khanh T.</creatorcontrib><creatorcontrib>Kaiser, Stephen</creatorcontrib><creatorcontrib>Lum, Lawrence</creatorcontrib><creatorcontrib>Stewart, Al</creatorcontrib><creatorcontrib>Gajiwala, Ketan S.</creatorcontrib><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</description><subject>anticancer drug</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Benzimidazoles - pharmacology</subject><subject>Binding Sites - drug effects</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>crystal structure</subject><subject>DNA Damage - drug effects</subject><subject>DNA Repair - genetics</subject><subject>drug design</subject><subject>Female</subject><subject>Humans</subject><subject>hydrogen-deuterium exchange</subject><subject>Indazoles - pharmacology</subject><subject>Ligands</subject><subject>niraparib</subject><subject>olaparib</subject><subject>PARP1</subject><subject>Phthalazines - pharmacology</subject><subject>Piperidines - pharmacology</subject><subject>Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors</subject><subject>Poly (ADP-Ribose) Polymerase-1 - genetics</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>protein–ligand interaction</subject><subject>surface plasmon resonance (SPR)</subject><subject>talazoparib</subject><subject>tankyrase1</subject><subject>Tankyrases - genetics</subject><subject>veliparib</subject><subject>Wnt Signaling Pathway - drug effects</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEYRYMotj72riR_YGpeM5NxIZT6BMEiCi6EkEkyNnWaKUla6L83dVR0YTYh5N7z8R0ATjAaYVSys3mtRo9jTNAI4SIv6Q4YYsRpRnP8sguGCBGcVSTnA3AQwhylwyq8DwaU0gInwhC8XtoQjIrWvcE4M3DRtUatWumhNtH4hXXSxQC7BqrWOqtkC6fjxymG1s1sbWPnYTDtFrC2cQOb9I7SvW-8DAYfgb1GtsEcf92H4Pn66mlym90_3NxNxveZYqyMGdes5jgvuGRFU2tdVbTJleQV16omSJYII0ZyVTOea6prrgtCkKJIE1UQWdFDcNFzl6t6YbQyLnrZiqW3C-k3opNW_P1xdibeurUoK8YLxhMA9QDluxC8aX66GImtaZFMi0_TojedKqe_Z_4UvtWmwHkfMGnztTVeBGWNU0Zbn3wJ3dn_6R-dwJBH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ryan, Kevin</creator><creator>Bolaňos, Ben</creator><creator>Smith, Marissa</creator><creator>Palde, Prakash B.</creator><creator>Cuenca, Paulina Delgado</creator><creator>VanArsdale, Todd L.</creator><creator>Niessen, Sherry</creator><creator>Zhang, Lianglin</creator><creator>Behenna, Douglas</creator><creator>Ornelas, Martha A.</creator><creator>Tran, Khanh T.</creator><creator>Kaiser, Stephen</creator><creator>Lum, Lawrence</creator><creator>Stewart, Al</creator><creator>Gajiwala, Ketan S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0338-2529</orcidid></search><sort><creationdate>20210101</creationdate><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><author>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anticancer drug</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Benzimidazoles - pharmacology</topic><topic>Binding Sites - drug effects</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>crystal structure</topic><topic>DNA Damage - drug effects</topic><topic>DNA Repair - genetics</topic><topic>drug design</topic><topic>Female</topic><topic>Humans</topic><topic>hydrogen-deuterium exchange</topic><topic>Indazoles - pharmacology</topic><topic>Ligands</topic><topic>niraparib</topic><topic>olaparib</topic><topic>PARP1</topic><topic>Phthalazines - pharmacology</topic><topic>Piperidines - pharmacology</topic><topic>Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors</topic><topic>Poly (ADP-Ribose) Polymerase-1 - genetics</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>protein–ligand interaction</topic><topic>surface plasmon resonance (SPR)</topic><topic>talazoparib</topic><topic>tankyrase1</topic><topic>Tankyrases - genetics</topic><topic>veliparib</topic><topic>Wnt Signaling Pathway - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Kevin</creatorcontrib><creatorcontrib>Bolaňos, Ben</creatorcontrib><creatorcontrib>Smith, Marissa</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Cuenca, Paulina Delgado</creatorcontrib><creatorcontrib>VanArsdale, Todd L.</creatorcontrib><creatorcontrib>Niessen, Sherry</creatorcontrib><creatorcontrib>Zhang, Lianglin</creatorcontrib><creatorcontrib>Behenna, Douglas</creatorcontrib><creatorcontrib>Ornelas, Martha A.</creatorcontrib><creatorcontrib>Tran, Khanh T.</creatorcontrib><creatorcontrib>Kaiser, Stephen</creatorcontrib><creatorcontrib>Lum, Lawrence</creatorcontrib><creatorcontrib>Stewart, Al</creatorcontrib><creatorcontrib>Gajiwala, Ketan S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Kevin</au><au>Bolaňos, Ben</au><au>Smith, Marissa</au><au>Palde, Prakash B.</au><au>Cuenca, Paulina Delgado</au><au>VanArsdale, Todd L.</au><au>Niessen, Sherry</au><au>Zhang, Lianglin</au><au>Behenna, Douglas</au><au>Ornelas, Martha A.</au><au>Tran, Khanh T.</au><au>Kaiser, Stephen</au><au>Lum, Lawrence</au><au>Stewart, Al</au><au>Gajiwala, Ketan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100251</spage><pages>100251-</pages><artnum>100251</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33361107</pmid><doi>10.1074/jbc.RA120.016573</doi><orcidid>https://orcid.org/0000-0003-0338-2529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2021-01, Vol.296, p.100251, Article 100251 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948648 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | anticancer drug Antineoplastic Agents - pharmacology Benzimidazoles - pharmacology Binding Sites - drug effects Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - pathology crystal structure DNA Damage - drug effects DNA Repair - genetics drug design Female Humans hydrogen-deuterium exchange Indazoles - pharmacology Ligands niraparib olaparib PARP1 Phthalazines - pharmacology Piperidines - pharmacology Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors Poly (ADP-Ribose) Polymerase-1 - genetics Poly(ADP-ribose) Polymerase Inhibitors - pharmacology protein–ligand interaction surface plasmon resonance (SPR) talazoparib tankyrase1 Tankyrases - genetics veliparib Wnt Signaling Pathway - drug effects |
title | Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20molecular%20determinants%20of%20clinical%20PARP1%20inhibitor%20selectivity%20for%20tankyrase1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ryan,%20Kevin&rft.date=2021-01-01&rft.volume=296&rft.spage=100251&rft.pages=100251-&rft.artnum=100251&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.016573&rft_dat=%3Celsevier_pubme%3ES0021925821000181%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33361107&rft_els_id=S0021925821000181&rfr_iscdi=true |