Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1

Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-01, Vol.296, p.100251, Article 100251
Hauptverfasser: Ryan, Kevin, Bolaňos, Ben, Smith, Marissa, Palde, Prakash B., Cuenca, Paulina Delgado, VanArsdale, Todd L., Niessen, Sherry, Zhang, Lianglin, Behenna, Douglas, Ornelas, Martha A., Tran, Khanh T., Kaiser, Stephen, Lum, Lawrence, Stewart, Al, Gajiwala, Ketan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100251
container_title The Journal of biological chemistry
container_volume 296
creator Ryan, Kevin
Bolaňos, Ben
Smith, Marissa
Palde, Prakash B.
Cuenca, Paulina Delgado
VanArsdale, Todd L.
Niessen, Sherry
Zhang, Lianglin
Behenna, Douglas
Ornelas, Martha A.
Tran, Khanh T.
Kaiser, Stephen
Lum, Lawrence
Stewart, Al
Gajiwala, Ketan S.
description Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.
doi_str_mv 10.1074/jbc.RA120.016573
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821000181</els_id><sourcerecordid>S0021925821000181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</originalsourceid><addsrcrecordid>eNp1kEtLAzEYRYMotj72riR_YGpeM5NxIZT6BMEiCi6EkEkyNnWaKUla6L83dVR0YTYh5N7z8R0ATjAaYVSys3mtRo9jTNAI4SIv6Q4YYsRpRnP8sguGCBGcVSTnA3AQwhylwyq8DwaU0gInwhC8XtoQjIrWvcE4M3DRtUatWumhNtH4hXXSxQC7BqrWOqtkC6fjxymG1s1sbWPnYTDtFrC2cQOb9I7SvW-8DAYfgb1GtsEcf92H4Pn66mlym90_3NxNxveZYqyMGdes5jgvuGRFU2tdVbTJleQV16omSJYII0ZyVTOea6prrgtCkKJIE1UQWdFDcNFzl6t6YbQyLnrZiqW3C-k3opNW_P1xdibeurUoK8YLxhMA9QDluxC8aX66GImtaZFMi0_TojedKqe_Z_4UvtWmwHkfMGnztTVeBGWNU0Zbn3wJ3dn_6R-dwJBH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</creator><creatorcontrib>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</creatorcontrib><description>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.016573</identifier><identifier>PMID: 33361107</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>anticancer drug ; Antineoplastic Agents - pharmacology ; Benzimidazoles - pharmacology ; Binding Sites - drug effects ; Breast Neoplasms - drug therapy ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; crystal structure ; DNA Damage - drug effects ; DNA Repair - genetics ; drug design ; Female ; Humans ; hydrogen-deuterium exchange ; Indazoles - pharmacology ; Ligands ; niraparib ; olaparib ; PARP1 ; Phthalazines - pharmacology ; Piperidines - pharmacology ; Poly (ADP-Ribose) Polymerase-1 - antagonists &amp; inhibitors ; Poly (ADP-Ribose) Polymerase-1 - genetics ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; protein–ligand interaction ; surface plasmon resonance (SPR) ; talazoparib ; tankyrase1 ; Tankyrases - genetics ; veliparib ; Wnt Signaling Pathway - drug effects</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100251, Article 100251</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 THE AUTHORS 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</citedby><cites>FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</cites><orcidid>0000-0003-0338-2529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948648/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948648/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33361107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, Kevin</creatorcontrib><creatorcontrib>Bolaňos, Ben</creatorcontrib><creatorcontrib>Smith, Marissa</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Cuenca, Paulina Delgado</creatorcontrib><creatorcontrib>VanArsdale, Todd L.</creatorcontrib><creatorcontrib>Niessen, Sherry</creatorcontrib><creatorcontrib>Zhang, Lianglin</creatorcontrib><creatorcontrib>Behenna, Douglas</creatorcontrib><creatorcontrib>Ornelas, Martha A.</creatorcontrib><creatorcontrib>Tran, Khanh T.</creatorcontrib><creatorcontrib>Kaiser, Stephen</creatorcontrib><creatorcontrib>Lum, Lawrence</creatorcontrib><creatorcontrib>Stewart, Al</creatorcontrib><creatorcontrib>Gajiwala, Ketan S.</creatorcontrib><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</description><subject>anticancer drug</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Benzimidazoles - pharmacology</subject><subject>Binding Sites - drug effects</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>crystal structure</subject><subject>DNA Damage - drug effects</subject><subject>DNA Repair - genetics</subject><subject>drug design</subject><subject>Female</subject><subject>Humans</subject><subject>hydrogen-deuterium exchange</subject><subject>Indazoles - pharmacology</subject><subject>Ligands</subject><subject>niraparib</subject><subject>olaparib</subject><subject>PARP1</subject><subject>Phthalazines - pharmacology</subject><subject>Piperidines - pharmacology</subject><subject>Poly (ADP-Ribose) Polymerase-1 - antagonists &amp; inhibitors</subject><subject>Poly (ADP-Ribose) Polymerase-1 - genetics</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>protein–ligand interaction</subject><subject>surface plasmon resonance (SPR)</subject><subject>talazoparib</subject><subject>tankyrase1</subject><subject>Tankyrases - genetics</subject><subject>veliparib</subject><subject>Wnt Signaling Pathway - drug effects</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEYRYMotj72riR_YGpeM5NxIZT6BMEiCi6EkEkyNnWaKUla6L83dVR0YTYh5N7z8R0ATjAaYVSys3mtRo9jTNAI4SIv6Q4YYsRpRnP8sguGCBGcVSTnA3AQwhylwyq8DwaU0gInwhC8XtoQjIrWvcE4M3DRtUatWumhNtH4hXXSxQC7BqrWOqtkC6fjxymG1s1sbWPnYTDtFrC2cQOb9I7SvW-8DAYfgb1GtsEcf92H4Pn66mlym90_3NxNxveZYqyMGdes5jgvuGRFU2tdVbTJleQV16omSJYII0ZyVTOea6prrgtCkKJIE1UQWdFDcNFzl6t6YbQyLnrZiqW3C-k3opNW_P1xdibeurUoK8YLxhMA9QDluxC8aX66GImtaZFMi0_TojedKqe_Z_4UvtWmwHkfMGnztTVeBGWNU0Zbn3wJ3dn_6R-dwJBH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ryan, Kevin</creator><creator>Bolaňos, Ben</creator><creator>Smith, Marissa</creator><creator>Palde, Prakash B.</creator><creator>Cuenca, Paulina Delgado</creator><creator>VanArsdale, Todd L.</creator><creator>Niessen, Sherry</creator><creator>Zhang, Lianglin</creator><creator>Behenna, Douglas</creator><creator>Ornelas, Martha A.</creator><creator>Tran, Khanh T.</creator><creator>Kaiser, Stephen</creator><creator>Lum, Lawrence</creator><creator>Stewart, Al</creator><creator>Gajiwala, Ketan S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0338-2529</orcidid></search><sort><creationdate>20210101</creationdate><title>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</title><author>Ryan, Kevin ; Bolaňos, Ben ; Smith, Marissa ; Palde, Prakash B. ; Cuenca, Paulina Delgado ; VanArsdale, Todd L. ; Niessen, Sherry ; Zhang, Lianglin ; Behenna, Douglas ; Ornelas, Martha A. ; Tran, Khanh T. ; Kaiser, Stephen ; Lum, Lawrence ; Stewart, Al ; Gajiwala, Ketan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8d4b81568a46fbdd993f5ca898dcb20a7010425cb485d3db8d6220c30d2c62a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anticancer drug</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Benzimidazoles - pharmacology</topic><topic>Binding Sites - drug effects</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>crystal structure</topic><topic>DNA Damage - drug effects</topic><topic>DNA Repair - genetics</topic><topic>drug design</topic><topic>Female</topic><topic>Humans</topic><topic>hydrogen-deuterium exchange</topic><topic>Indazoles - pharmacology</topic><topic>Ligands</topic><topic>niraparib</topic><topic>olaparib</topic><topic>PARP1</topic><topic>Phthalazines - pharmacology</topic><topic>Piperidines - pharmacology</topic><topic>Poly (ADP-Ribose) Polymerase-1 - antagonists &amp; inhibitors</topic><topic>Poly (ADP-Ribose) Polymerase-1 - genetics</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>protein–ligand interaction</topic><topic>surface plasmon resonance (SPR)</topic><topic>talazoparib</topic><topic>tankyrase1</topic><topic>Tankyrases - genetics</topic><topic>veliparib</topic><topic>Wnt Signaling Pathway - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Kevin</creatorcontrib><creatorcontrib>Bolaňos, Ben</creatorcontrib><creatorcontrib>Smith, Marissa</creatorcontrib><creatorcontrib>Palde, Prakash B.</creatorcontrib><creatorcontrib>Cuenca, Paulina Delgado</creatorcontrib><creatorcontrib>VanArsdale, Todd L.</creatorcontrib><creatorcontrib>Niessen, Sherry</creatorcontrib><creatorcontrib>Zhang, Lianglin</creatorcontrib><creatorcontrib>Behenna, Douglas</creatorcontrib><creatorcontrib>Ornelas, Martha A.</creatorcontrib><creatorcontrib>Tran, Khanh T.</creatorcontrib><creatorcontrib>Kaiser, Stephen</creatorcontrib><creatorcontrib>Lum, Lawrence</creatorcontrib><creatorcontrib>Stewart, Al</creatorcontrib><creatorcontrib>Gajiwala, Ketan S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Kevin</au><au>Bolaňos, Ben</au><au>Smith, Marissa</au><au>Palde, Prakash B.</au><au>Cuenca, Paulina Delgado</au><au>VanArsdale, Todd L.</au><au>Niessen, Sherry</au><au>Zhang, Lianglin</au><au>Behenna, Douglas</au><au>Ornelas, Martha A.</au><au>Tran, Khanh T.</au><au>Kaiser, Stephen</au><au>Lum, Lawrence</au><au>Stewart, Al</au><au>Gajiwala, Ketan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100251</spage><pages>100251-</pages><artnum>100251</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway–related cancers, such as colorectal cancers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33361107</pmid><doi>10.1074/jbc.RA120.016573</doi><orcidid>https://orcid.org/0000-0003-0338-2529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-01, Vol.296, p.100251, Article 100251
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948648
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects anticancer drug
Antineoplastic Agents - pharmacology
Benzimidazoles - pharmacology
Binding Sites - drug effects
Breast Neoplasms - drug therapy
Breast Neoplasms - genetics
Breast Neoplasms - pathology
crystal structure
DNA Damage - drug effects
DNA Repair - genetics
drug design
Female
Humans
hydrogen-deuterium exchange
Indazoles - pharmacology
Ligands
niraparib
olaparib
PARP1
Phthalazines - pharmacology
Piperidines - pharmacology
Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors
Poly (ADP-Ribose) Polymerase-1 - genetics
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
protein–ligand interaction
surface plasmon resonance (SPR)
talazoparib
tankyrase1
Tankyrases - genetics
veliparib
Wnt Signaling Pathway - drug effects
title Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20molecular%20determinants%20of%20clinical%20PARP1%20inhibitor%20selectivity%20for%20tankyrase1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ryan,%20Kevin&rft.date=2021-01-01&rft.volume=296&rft.spage=100251&rft.pages=100251-&rft.artnum=100251&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.016573&rft_dat=%3Celsevier_pubme%3ES0021925821000181%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33361107&rft_els_id=S0021925821000181&rfr_iscdi=true