Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept
Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2021-03, Vol.2021, p.5521881-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 5521881 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2021 |
creator | Amini, Payam Moghimbeigi, Abbas Zayeri, Farid Tapak, Leili Maroufizadeh, Saman Verbeke, Geert |
description | Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution. |
doi_str_mv | 10.1155/2021/5521881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7946459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505358367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</originalsourceid><addsrcrecordid>eNp9kcuLFDEQhxtR3IfePEuOgo6bd3c8LKyzPlZGBkTBW0gn1TOR7mRM0ive_NPNMuOgF0-pUB9fFfVrmicEvyREiAuKKbkQgpKuI_eaU9LybiFb0t0_1vjrSXOW8zeMBWkFedicMNZKRgQ5bX6tYtj4MjsfzIg-RB8K-hgdjKMPGxQHtE77lgkOrW-h_vIOUgaHlnGu8HouNk6QX6Er9Dp5twF07XNJvp-LjwENMaGyhaPnUxXFCd2EAsnCrjxqHgxmzPD48J43X96--bx8v1it390sr1YLyykuC6Is2L6lvC7uqOuskkx2g5LccEoElbjtFVZAFe_B8MFiRhTnijkpOzCEnTeXe-9u7idwFkJJZtS75CeTfupovP63E_xWb-KtbhWXXKgqeHYQpPh9hlz05LOthzIB4pw1FVgw0THZVvTFHrUp5pxgOI4hWN-Fpu9C04fQKv7079WO8J-UKvB8D2x9cOaH_7_uNyD8oJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505358367</pqid></control><display><type>article</type><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert</creator><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert ; Kloczkowski, Andrzej</creatorcontrib><description>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/5521881</identifier><identifier>PMID: 33763151</identifier><language>eng</language><publisher>United States: Hindawi</publisher><ispartof>Computational and mathematical methods in medicine, 2021-03, Vol.2021, p.5521881-13</ispartof><rights>Copyright © 2021 Payam Amini et al.</rights><rights>Copyright © 2021 Payam Amini et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</citedby><cites>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</cites><orcidid>0000-0002-4378-3143 ; 0000-0001-5794-3876 ; 0000-0001-8675-0045 ; 0000-0002-7791-8122 ; 0000-0002-3803-3663 ; 0000-0001-8430-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Amini, Payam</creatorcontrib><creatorcontrib>Moghimbeigi, Abbas</creatorcontrib><creatorcontrib>Zayeri, Farid</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Maroufizadeh, Saman</creatorcontrib><creatorcontrib>Verbeke, Geert</creatorcontrib><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</description><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kcuLFDEQhxtR3IfePEuOgo6bd3c8LKyzPlZGBkTBW0gn1TOR7mRM0ive_NPNMuOgF0-pUB9fFfVrmicEvyREiAuKKbkQgpKuI_eaU9LybiFb0t0_1vjrSXOW8zeMBWkFedicMNZKRgQ5bX6tYtj4MjsfzIg-RB8K-hgdjKMPGxQHtE77lgkOrW-h_vIOUgaHlnGu8HouNk6QX6Er9Dp5twF07XNJvp-LjwENMaGyhaPnUxXFCd2EAsnCrjxqHgxmzPD48J43X96--bx8v1it390sr1YLyykuC6Is2L6lvC7uqOuskkx2g5LccEoElbjtFVZAFe_B8MFiRhTnijkpOzCEnTeXe-9u7idwFkJJZtS75CeTfupovP63E_xWb-KtbhWXXKgqeHYQpPh9hlz05LOthzIB4pw1FVgw0THZVvTFHrUp5pxgOI4hWN-Fpu9C04fQKv7079WO8J-UKvB8D2x9cOaH_7_uNyD8oJ0</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Amini, Payam</creator><creator>Moghimbeigi, Abbas</creator><creator>Zayeri, Farid</creator><creator>Tapak, Leili</creator><creator>Maroufizadeh, Saman</creator><creator>Verbeke, Geert</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4378-3143</orcidid><orcidid>https://orcid.org/0000-0001-5794-3876</orcidid><orcidid>https://orcid.org/0000-0001-8675-0045</orcidid><orcidid>https://orcid.org/0000-0002-7791-8122</orcidid><orcidid>https://orcid.org/0000-0002-3803-3663</orcidid><orcidid>https://orcid.org/0000-0001-8430-7576</orcidid></search><sort><creationdate>20210303</creationdate><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><author>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amini, Payam</creatorcontrib><creatorcontrib>Moghimbeigi, Abbas</creatorcontrib><creatorcontrib>Zayeri, Farid</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Maroufizadeh, Saman</creatorcontrib><creatorcontrib>Verbeke, Geert</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amini, Payam</au><au>Moghimbeigi, Abbas</au><au>Zayeri, Farid</au><au>Tapak, Leili</au><au>Maroufizadeh, Saman</au><au>Verbeke, Geert</au><au>Kloczkowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021-03-03</date><risdate>2021</risdate><volume>2021</volume><spage>5521881</spage><epage>13</epage><pages>5521881-13</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33763151</pmid><doi>10.1155/2021/5521881</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4378-3143</orcidid><orcidid>https://orcid.org/0000-0001-5794-3876</orcidid><orcidid>https://orcid.org/0000-0001-8675-0045</orcidid><orcidid>https://orcid.org/0000-0002-7791-8122</orcidid><orcidid>https://orcid.org/0000-0002-3803-3663</orcidid><orcidid>https://orcid.org/0000-0001-8430-7576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2021-03, Vol.2021, p.5521881-13 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7946459 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
title | Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Joint%20Modelling%20of%20Ordinal%20and%20Overdispersed%20Count%20Outcomes:%20A%20Bridge%20Distribution%20for%20the%20Ordinal%20Random%20Intercept&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Amini,%20Payam&rft.date=2021-03-03&rft.volume=2021&rft.spage=5521881&rft.epage=13&rft.pages=5521881-13&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/5521881&rft_dat=%3Cproquest_pubme%3E2505358367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505358367&rft_id=info:pmid/33763151&rfr_iscdi=true |