Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept

Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2021-03, Vol.2021, p.5521881-13
Hauptverfasser: Amini, Payam, Moghimbeigi, Abbas, Zayeri, Farid, Tapak, Leili, Maroufizadeh, Saman, Verbeke, Geert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 5521881
container_title Computational and mathematical methods in medicine
container_volume 2021
creator Amini, Payam
Moghimbeigi, Abbas
Zayeri, Farid
Tapak, Leili
Maroufizadeh, Saman
Verbeke, Geert
description Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.
doi_str_mv 10.1155/2021/5521881
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7946459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505358367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</originalsourceid><addsrcrecordid>eNp9kcuLFDEQhxtR3IfePEuOgo6bd3c8LKyzPlZGBkTBW0gn1TOR7mRM0ive_NPNMuOgF0-pUB9fFfVrmicEvyREiAuKKbkQgpKuI_eaU9LybiFb0t0_1vjrSXOW8zeMBWkFedicMNZKRgQ5bX6tYtj4MjsfzIg-RB8K-hgdjKMPGxQHtE77lgkOrW-h_vIOUgaHlnGu8HouNk6QX6Er9Dp5twF07XNJvp-LjwENMaGyhaPnUxXFCd2EAsnCrjxqHgxmzPD48J43X96--bx8v1it390sr1YLyykuC6Is2L6lvC7uqOuskkx2g5LccEoElbjtFVZAFe_B8MFiRhTnijkpOzCEnTeXe-9u7idwFkJJZtS75CeTfupovP63E_xWb-KtbhWXXKgqeHYQpPh9hlz05LOthzIB4pw1FVgw0THZVvTFHrUp5pxgOI4hWN-Fpu9C04fQKv7079WO8J-UKvB8D2x9cOaH_7_uNyD8oJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505358367</pqid></control><display><type>article</type><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert</creator><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert ; Kloczkowski, Andrzej</creatorcontrib><description>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/5521881</identifier><identifier>PMID: 33763151</identifier><language>eng</language><publisher>United States: Hindawi</publisher><ispartof>Computational and mathematical methods in medicine, 2021-03, Vol.2021, p.5521881-13</ispartof><rights>Copyright © 2021 Payam Amini et al.</rights><rights>Copyright © 2021 Payam Amini et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</citedby><cites>FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</cites><orcidid>0000-0002-4378-3143 ; 0000-0001-5794-3876 ; 0000-0001-8675-0045 ; 0000-0002-7791-8122 ; 0000-0002-3803-3663 ; 0000-0001-8430-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Amini, Payam</creatorcontrib><creatorcontrib>Moghimbeigi, Abbas</creatorcontrib><creatorcontrib>Zayeri, Farid</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Maroufizadeh, Saman</creatorcontrib><creatorcontrib>Verbeke, Geert</creatorcontrib><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</description><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kcuLFDEQhxtR3IfePEuOgo6bd3c8LKyzPlZGBkTBW0gn1TOR7mRM0ive_NPNMuOgF0-pUB9fFfVrmicEvyREiAuKKbkQgpKuI_eaU9LybiFb0t0_1vjrSXOW8zeMBWkFedicMNZKRgQ5bX6tYtj4MjsfzIg-RB8K-hgdjKMPGxQHtE77lgkOrW-h_vIOUgaHlnGu8HouNk6QX6Er9Dp5twF07XNJvp-LjwENMaGyhaPnUxXFCd2EAsnCrjxqHgxmzPD48J43X96--bx8v1it390sr1YLyykuC6Is2L6lvC7uqOuskkx2g5LccEoElbjtFVZAFe_B8MFiRhTnijkpOzCEnTeXe-9u7idwFkJJZtS75CeTfupovP63E_xWb-KtbhWXXKgqeHYQpPh9hlz05LOthzIB4pw1FVgw0THZVvTFHrUp5pxgOI4hWN-Fpu9C04fQKv7079WO8J-UKvB8D2x9cOaH_7_uNyD8oJ0</recordid><startdate>20210303</startdate><enddate>20210303</enddate><creator>Amini, Payam</creator><creator>Moghimbeigi, Abbas</creator><creator>Zayeri, Farid</creator><creator>Tapak, Leili</creator><creator>Maroufizadeh, Saman</creator><creator>Verbeke, Geert</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4378-3143</orcidid><orcidid>https://orcid.org/0000-0001-5794-3876</orcidid><orcidid>https://orcid.org/0000-0001-8675-0045</orcidid><orcidid>https://orcid.org/0000-0002-7791-8122</orcidid><orcidid>https://orcid.org/0000-0002-3803-3663</orcidid><orcidid>https://orcid.org/0000-0001-8430-7576</orcidid></search><sort><creationdate>20210303</creationdate><title>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</title><author>Amini, Payam ; Moghimbeigi, Abbas ; Zayeri, Farid ; Tapak, Leili ; Maroufizadeh, Saman ; Verbeke, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-19cecb724763d2d8c96368f964a42152607b909e294bea4fc03194493d668ea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amini, Payam</creatorcontrib><creatorcontrib>Moghimbeigi, Abbas</creatorcontrib><creatorcontrib>Zayeri, Farid</creatorcontrib><creatorcontrib>Tapak, Leili</creatorcontrib><creatorcontrib>Maroufizadeh, Saman</creatorcontrib><creatorcontrib>Verbeke, Geert</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amini, Payam</au><au>Moghimbeigi, Abbas</au><au>Zayeri, Farid</au><au>Tapak, Leili</au><au>Maroufizadeh, Saman</au><au>Verbeke, Geert</au><au>Kloczkowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021-03-03</date><risdate>2021</risdate><volume>2021</volume><spage>5521881</spage><epage>13</epage><pages>5521881-13</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Associated longitudinal response variables are faced with variations caused by repeated measurements over time along with the association between the responses. To model a longitudinal ordinal outcome using generalized linear mixed models, integrating over a normally distributed random intercept in the proportional odds ordinal logistic regression does not yield a closed form. In this paper, we combined a longitudinal count and an ordinal response variable with Bridge distribution for the random intercept in the ordinal logistic regression submodel. We compared the results to that of a normal distribution. The two associated response variables are combined using correlated random intercepts. The random intercept in the count outcome submodel follows a normal distribution. The random intercept in the ordinal outcome submodel follows Bridge distribution. The estimations were carried out using a likelihood-based approach in direct and conditional joint modelling approaches. To illustrate the performance of the model, a simulation study was conducted. Based on the simulation results, assuming a Bridge distribution for the random intercept of ordinal logistic regression results in accurate estimation even if the random intercept is normally distributed. Moreover, considering the association between longitudinal count and ordinal responses resulted in estimation with lower standard error in comparison to univariate analysis. In addition to the same interpretation for the parameter in marginal and conditional estimates thanks to the assumption of a Bridge distribution for the random intercept of ordinal logistic regression, more efficient estimates were found compared to that of normal distribution.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33763151</pmid><doi>10.1155/2021/5521881</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4378-3143</orcidid><orcidid>https://orcid.org/0000-0001-5794-3876</orcidid><orcidid>https://orcid.org/0000-0001-8675-0045</orcidid><orcidid>https://orcid.org/0000-0002-7791-8122</orcidid><orcidid>https://orcid.org/0000-0002-3803-3663</orcidid><orcidid>https://orcid.org/0000-0001-8430-7576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2021-03, Vol.2021, p.5521881-13
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7946459
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
title Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Joint%20Modelling%20of%20Ordinal%20and%20Overdispersed%20Count%20Outcomes:%20A%20Bridge%20Distribution%20for%20the%20Ordinal%20Random%20Intercept&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Amini,%20Payam&rft.date=2021-03-03&rft.volume=2021&rft.spage=5521881&rft.epage=13&rft.pages=5521881-13&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/5521881&rft_dat=%3Cproquest_pubme%3E2505358367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505358367&rft_id=info:pmid/33763151&rfr_iscdi=true