Perceptual and computational detection of face morphing
A relatively new type of identity theft uses morphed facial images in identification documents in which images of two individuals are digitally blended to create an image that maintains a likeness to each of the original identities. We created a set of high-quality digital morphs from passport-style...
Gespeichert in:
Veröffentlicht in: | Journal of vision (Charlottesville, Va.) Va.), 2021-03, Vol.21 (3), p.4-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 4 |
container_title | Journal of vision (Charlottesville, Va.) |
container_volume | 21 |
creator | Nightingale, Sophie J Agarwal, Shruti Farid, Hany |
description | A relatively new type of identity theft uses morphed facial images in identification documents in which images of two individuals are digitally blended to create an image that maintains a likeness to each of the original identities. We created a set of high-quality digital morphs from passport-style photos for a diverse set of people across gender, race, and age. We then examine people's ability to detect facial morphing both in terms of determining if two side-by-side faces are of the same individual or not and in terms of identifying if a face is the result of digital morphing. We show that human participants struggle at both tasks. Even modern machine-learning-based facial recognition struggles to distinguish between an individual and their morphed version. We conclude with a hopeful note, describing a computational technique that holds some promise in recognizing that one facial image is a morphed version of another. |
doi_str_mv | 10.1167/jov.21.3.4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496251166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-43a2e245615f58a2537a16e92218805efb76ee432d4485b76c8d7a4f77e842bc3</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxRdRbK1e_ACSowip2d3Z3eQiSPEfFPSg52W7mbQpSTbuJgW_vSmtpZ7mzcyPN8Mj5JomU0qlul-7zZTRKZ_CCRlTwSFWXLLTIz0iFyGsk4QlIqHnZMS5FFKIdEzUB3qLbdebKjJNHllXt31nutI1wyTHDu1WR66ICmMxqp1vV2WzvCRnhakCXu3rhHw9P33OXuP5-8vb7HEeWwDoYuCGIQMhqShEapjgylCJGWM0TROBxUJJROAsB0jF0Ng0VwYKpTAFtrB8Qh52vm2_qDG32HTeVLr1ZW38j3am1P83TbnSS7fRKgORST4Y3O4NvPvuMXS6LoPFqjINuj5oBplkYshRDujdDrXeheCxOJyhid4mrYekNaOaaxjgm-PHDuhftPwXQ5x59Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496251166</pqid></control><display><type>article</type><title>Perceptual and computational detection of face morphing</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Nightingale, Sophie J ; Agarwal, Shruti ; Farid, Hany</creator><creatorcontrib>Nightingale, Sophie J ; Agarwal, Shruti ; Farid, Hany</creatorcontrib><description>A relatively new type of identity theft uses morphed facial images in identification documents in which images of two individuals are digitally blended to create an image that maintains a likeness to each of the original identities. We created a set of high-quality digital morphs from passport-style photos for a diverse set of people across gender, race, and age. We then examine people's ability to detect facial morphing both in terms of determining if two side-by-side faces are of the same individual or not and in terms of identifying if a face is the result of digital morphing. We show that human participants struggle at both tasks. Even modern machine-learning-based facial recognition struggles to distinguish between an individual and their morphed version. We conclude with a hopeful note, describing a computational technique that holds some promise in recognizing that one facial image is a morphed version of another.</description><identifier>ISSN: 1534-7362</identifier><identifier>EISSN: 1534-7362</identifier><identifier>DOI: 10.1167/jov.21.3.4</identifier><identifier>PMID: 33656558</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><ispartof>Journal of vision (Charlottesville, Va.), 2021-03, Vol.21 (3), p.4-4</ispartof><rights>Copyright 2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-43a2e245615f58a2537a16e92218805efb76ee432d4485b76c8d7a4f77e842bc3</citedby><cites>FETCH-LOGICAL-c444t-43a2e245615f58a2537a16e92218805efb76ee432d4485b76c8d7a4f77e842bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945963/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945963/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33656558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nightingale, Sophie J</creatorcontrib><creatorcontrib>Agarwal, Shruti</creatorcontrib><creatorcontrib>Farid, Hany</creatorcontrib><title>Perceptual and computational detection of face morphing</title><title>Journal of vision (Charlottesville, Va.)</title><addtitle>J Vis</addtitle><description>A relatively new type of identity theft uses morphed facial images in identification documents in which images of two individuals are digitally blended to create an image that maintains a likeness to each of the original identities. We created a set of high-quality digital morphs from passport-style photos for a diverse set of people across gender, race, and age. We then examine people's ability to detect facial morphing both in terms of determining if two side-by-side faces are of the same individual or not and in terms of identifying if a face is the result of digital morphing. We show that human participants struggle at both tasks. Even modern machine-learning-based facial recognition struggles to distinguish between an individual and their morphed version. We conclude with a hopeful note, describing a computational technique that holds some promise in recognizing that one facial image is a morphed version of another.</description><issn>1534-7362</issn><issn>1534-7362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE9Lw0AQxRdRbK1e_ACSowip2d3Z3eQiSPEfFPSg52W7mbQpSTbuJgW_vSmtpZ7mzcyPN8Mj5JomU0qlul-7zZTRKZ_CCRlTwSFWXLLTIz0iFyGsk4QlIqHnZMS5FFKIdEzUB3qLbdebKjJNHllXt31nutI1wyTHDu1WR66ICmMxqp1vV2WzvCRnhakCXu3rhHw9P33OXuP5-8vb7HEeWwDoYuCGIQMhqShEapjgylCJGWM0TROBxUJJROAsB0jF0Ng0VwYKpTAFtrB8Qh52vm2_qDG32HTeVLr1ZW38j3am1P83TbnSS7fRKgORST4Y3O4NvPvuMXS6LoPFqjINuj5oBplkYshRDujdDrXeheCxOJyhid4mrYekNaOaaxjgm-PHDuhftPwXQ5x59Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Nightingale, Sophie J</creator><creator>Agarwal, Shruti</creator><creator>Farid, Hany</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210301</creationdate><title>Perceptual and computational detection of face morphing</title><author>Nightingale, Sophie J ; Agarwal, Shruti ; Farid, Hany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-43a2e245615f58a2537a16e92218805efb76ee432d4485b76c8d7a4f77e842bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nightingale, Sophie J</creatorcontrib><creatorcontrib>Agarwal, Shruti</creatorcontrib><creatorcontrib>Farid, Hany</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of vision (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nightingale, Sophie J</au><au>Agarwal, Shruti</au><au>Farid, Hany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual and computational detection of face morphing</atitle><jtitle>Journal of vision (Charlottesville, Va.)</jtitle><addtitle>J Vis</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>4</spage><epage>4</epage><pages>4-4</pages><issn>1534-7362</issn><eissn>1534-7362</eissn><abstract>A relatively new type of identity theft uses morphed facial images in identification documents in which images of two individuals are digitally blended to create an image that maintains a likeness to each of the original identities. We created a set of high-quality digital morphs from passport-style photos for a diverse set of people across gender, race, and age. We then examine people's ability to detect facial morphing both in terms of determining if two side-by-side faces are of the same individual or not and in terms of identifying if a face is the result of digital morphing. We show that human participants struggle at both tasks. Even modern machine-learning-based facial recognition struggles to distinguish between an individual and their morphed version. We conclude with a hopeful note, describing a computational technique that holds some promise in recognizing that one facial image is a morphed version of another.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>33656558</pmid><doi>10.1167/jov.21.3.4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-7362 |
ispartof | Journal of vision (Charlottesville, Va.), 2021-03, Vol.21 (3), p.4-4 |
issn | 1534-7362 1534-7362 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945963 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Perceptual and computational detection of face morphing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual%20and%20computational%20detection%20of%20face%20morphing&rft.jtitle=Journal%20of%20vision%20(Charlottesville,%20Va.)&rft.au=Nightingale,%20Sophie%20J&rft.date=2021-03-01&rft.volume=21&rft.issue=3&rft.spage=4&rft.epage=4&rft.pages=4-4&rft.issn=1534-7362&rft.eissn=1534-7362&rft_id=info:doi/10.1167/jov.21.3.4&rft_dat=%3Cproquest_pubme%3E2496251166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496251166&rft_id=info:pmid/33656558&rfr_iscdi=true |