Automatic lumbar spinal MRI image segmentation with a multi-scale attention network

Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-09, Vol.33 (18), p.11589-11602
Hauptverfasser: Li, Haixing, Luo, Haibo, Huan, Wang, Shi, Zelin, Yan, Chongnan, Wang, Lanbo, Mu, Yueming, Liu, Yunpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11602
container_issue 18
container_start_page 11589
container_title Neural computing & applications
container_volume 33
creator Li, Haixing
Luo, Haibo
Huan, Wang
Shi, Zelin
Yan, Chongnan
Wang, Lanbo
Mu, Yueming
Liu, Yunpeng
description Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.
doi_str_mv 10.1007/s00521-021-05856-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501850604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EopfCH2CBLLFhE5j4Fd8NUlVBqVSExGNt2c74NiWJL7ZDxb-vwy3lsWAxsqzzzZmxDyFPW3jZAnSvMoBkbQNrSS1VI-6RTSs4b3i93ycb2IoqKcGPyKOcrwBAKC0fkiPOO8ZFpzbk08lS4mTL4Om4TM4mmvfDbEf6_uM5HSa7Q5pxN-FcKhNnej2US2rptIxlaLK3I1JbSpVXccZyHdPXx-RBsGPGJ7fnMfny9s3n03fNxYez89OTi8aLTpQGHVPQMRv60DvXI1rEnomgATvrpLdMMOU1Bt1qIVH7nvetcs7xEIKWW35MXh9894ubsPd1i2RHs0917_TDRDuYv5V5uDS7-N10WyEV49Xgxa1Bit8WzMVMQ_Y4jnbGuGTDJLRaggJR0ef_oFdxSfWjVkpxqTT7SbED5VPMOWG4W6YFs2ZmDpkZWGvNzKxNz_58xl3Lr5AqwA9ArtK8w_R79n9sbwBdeqTG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563568204</pqid></control><display><type>article</type><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><source>SpringerNature Journals</source><creator>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</creator><creatorcontrib>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</creatorcontrib><description>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-05856-4</identifier><identifier>PMID: 33723476</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Back surgery ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Diabetic retinopathy ; Diagnosis ; Feature extraction ; Hospitals ; Image Processing and Computer Vision ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Modules ; Original ; Original Article ; Probability and Statistics in Computer Science ; Semantics ; Spinal stenosis</subject><ispartof>Neural computing &amp; applications, 2021-09, Vol.33 (18), p.11589-11602</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</citedby><cites>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</cites><orcidid>0000-0001-6425-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-05856-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-05856-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33723476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Luo, Haibo</creatorcontrib><creatorcontrib>Huan, Wang</creatorcontrib><creatorcontrib>Shi, Zelin</creatorcontrib><creatorcontrib>Yan, Chongnan</creatorcontrib><creatorcontrib>Wang, Lanbo</creatorcontrib><creatorcontrib>Mu, Yueming</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><addtitle>Neural Comput Appl</addtitle><description>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Back surgery</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Modules</subject><subject>Original</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantics</subject><subject>Spinal stenosis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtv1TAQhS0EopfCH2CBLLFhE5j4Fd8NUlVBqVSExGNt2c74NiWJL7ZDxb-vwy3lsWAxsqzzzZmxDyFPW3jZAnSvMoBkbQNrSS1VI-6RTSs4b3i93ycb2IoqKcGPyKOcrwBAKC0fkiPOO8ZFpzbk08lS4mTL4Om4TM4mmvfDbEf6_uM5HSa7Q5pxN-FcKhNnej2US2rptIxlaLK3I1JbSpVXccZyHdPXx-RBsGPGJ7fnMfny9s3n03fNxYez89OTi8aLTpQGHVPQMRv60DvXI1rEnomgATvrpLdMMOU1Bt1qIVH7nvetcs7xEIKWW35MXh9894ubsPd1i2RHs0917_TDRDuYv5V5uDS7-N10WyEV49Xgxa1Bit8WzMVMQ_Y4jnbGuGTDJLRaggJR0ef_oFdxSfWjVkpxqTT7SbED5VPMOWG4W6YFs2ZmDpkZWGvNzKxNz_58xl3Lr5AqwA9ArtK8w_R79n9sbwBdeqTG</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Haixing</creator><creator>Luo, Haibo</creator><creator>Huan, Wang</creator><creator>Shi, Zelin</creator><creator>Yan, Chongnan</creator><creator>Wang, Lanbo</creator><creator>Mu, Yueming</creator><creator>Liu, Yunpeng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6425-6433</orcidid></search><sort><creationdate>20210901</creationdate><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><author>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Back surgery</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Modules</topic><topic>Original</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantics</topic><topic>Spinal stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Luo, Haibo</creatorcontrib><creatorcontrib>Huan, Wang</creatorcontrib><creatorcontrib>Shi, Zelin</creatorcontrib><creatorcontrib>Yan, Chongnan</creatorcontrib><creatorcontrib>Wang, Lanbo</creatorcontrib><creatorcontrib>Mu, Yueming</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haixing</au><au>Luo, Haibo</au><au>Huan, Wang</au><au>Shi, Zelin</au><au>Yan, Chongnan</au><au>Wang, Lanbo</au><au>Mu, Yueming</au><au>Liu, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><addtitle>Neural Comput Appl</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>18</issue><spage>11589</spage><epage>11602</epage><pages>11589-11602</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</abstract><cop>London</cop><pub>Springer London</pub><pmid>33723476</pmid><doi>10.1007/s00521-021-05856-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6425-6433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-09, Vol.33 (18), p.11589-11602
issn 0941-0643
1433-3058
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945623
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Automation
Back surgery
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Diabetic retinopathy
Diagnosis
Feature extraction
Hospitals
Image Processing and Computer Vision
Image segmentation
Machine learning
Magnetic resonance imaging
Medical imaging
Medical research
Modules
Original
Original Article
Probability and Statistics in Computer Science
Semantics
Spinal stenosis
title Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20lumbar%20spinal%20MRI%20image%20segmentation%20with%20a%20multi-scale%20attention%20network&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Li,%20Haixing&rft.date=2021-09-01&rft.volume=33&rft.issue=18&rft.spage=11589&rft.epage=11602&rft.pages=11589-11602&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-05856-4&rft_dat=%3Cproquest_pubme%3E2501850604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563568204&rft_id=info:pmid/33723476&rfr_iscdi=true