Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep lear...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-09, Vol.33 (18), p.11589-11602 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11602 |
---|---|
container_issue | 18 |
container_start_page | 11589 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Li, Haixing Luo, Haibo Huan, Wang Shi, Zelin Yan, Chongnan Wang, Lanbo Mu, Yueming Liu, Yunpeng |
description | Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm. |
doi_str_mv | 10.1007/s00521-021-05856-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501850604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EopfCH2CBLLFhE5j4Fd8NUlVBqVSExGNt2c74NiWJL7ZDxb-vwy3lsWAxsqzzzZmxDyFPW3jZAnSvMoBkbQNrSS1VI-6RTSs4b3i93ycb2IoqKcGPyKOcrwBAKC0fkiPOO8ZFpzbk08lS4mTL4Om4TM4mmvfDbEf6_uM5HSa7Q5pxN-FcKhNnej2US2rptIxlaLK3I1JbSpVXccZyHdPXx-RBsGPGJ7fnMfny9s3n03fNxYez89OTi8aLTpQGHVPQMRv60DvXI1rEnomgATvrpLdMMOU1Bt1qIVH7nvetcs7xEIKWW35MXh9894ubsPd1i2RHs0917_TDRDuYv5V5uDS7-N10WyEV49Xgxa1Bit8WzMVMQ_Y4jnbGuGTDJLRaggJR0ef_oFdxSfWjVkpxqTT7SbED5VPMOWG4W6YFs2ZmDpkZWGvNzKxNz_58xl3Lr5AqwA9ArtK8w_R79n9sbwBdeqTG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563568204</pqid></control><display><type>article</type><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><source>SpringerNature Journals</source><creator>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</creator><creatorcontrib>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</creatorcontrib><description>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-05856-4</identifier><identifier>PMID: 33723476</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Back surgery ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Diabetic retinopathy ; Diagnosis ; Feature extraction ; Hospitals ; Image Processing and Computer Vision ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Modules ; Original ; Original Article ; Probability and Statistics in Computer Science ; Semantics ; Spinal stenosis</subject><ispartof>Neural computing & applications, 2021-09, Vol.33 (18), p.11589-11602</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</citedby><cites>FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</cites><orcidid>0000-0001-6425-6433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-05856-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-05856-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33723476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Luo, Haibo</creatorcontrib><creatorcontrib>Huan, Wang</creatorcontrib><creatorcontrib>Shi, Zelin</creatorcontrib><creatorcontrib>Yan, Chongnan</creatorcontrib><creatorcontrib>Wang, Lanbo</creatorcontrib><creatorcontrib>Mu, Yueming</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><addtitle>Neural Comput Appl</addtitle><description>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Back surgery</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Modules</subject><subject>Original</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantics</subject><subject>Spinal stenosis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtv1TAQhS0EopfCH2CBLLFhE5j4Fd8NUlVBqVSExGNt2c74NiWJL7ZDxb-vwy3lsWAxsqzzzZmxDyFPW3jZAnSvMoBkbQNrSS1VI-6RTSs4b3i93ycb2IoqKcGPyKOcrwBAKC0fkiPOO8ZFpzbk08lS4mTL4Om4TM4mmvfDbEf6_uM5HSa7Q5pxN-FcKhNnej2US2rptIxlaLK3I1JbSpVXccZyHdPXx-RBsGPGJ7fnMfny9s3n03fNxYez89OTi8aLTpQGHVPQMRv60DvXI1rEnomgATvrpLdMMOU1Bt1qIVH7nvetcs7xEIKWW35MXh9894ubsPd1i2RHs0917_TDRDuYv5V5uDS7-N10WyEV49Xgxa1Bit8WzMVMQ_Y4jnbGuGTDJLRaggJR0ef_oFdxSfWjVkpxqTT7SbED5VPMOWG4W6YFs2ZmDpkZWGvNzKxNz_58xl3Lr5AqwA9ArtK8w_R79n9sbwBdeqTG</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Haixing</creator><creator>Luo, Haibo</creator><creator>Huan, Wang</creator><creator>Shi, Zelin</creator><creator>Yan, Chongnan</creator><creator>Wang, Lanbo</creator><creator>Mu, Yueming</creator><creator>Liu, Yunpeng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6425-6433</orcidid></search><sort><creationdate>20210901</creationdate><title>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</title><author>Li, Haixing ; Luo, Haibo ; Huan, Wang ; Shi, Zelin ; Yan, Chongnan ; Wang, Lanbo ; Mu, Yueming ; Liu, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-eb26072afdfdbbdeeaeed24f80e7ab5ca2426c8ef81845e8cd3d16bbb3fff8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Back surgery</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Modules</topic><topic>Original</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantics</topic><topic>Spinal stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Luo, Haibo</creatorcontrib><creatorcontrib>Huan, Wang</creatorcontrib><creatorcontrib>Shi, Zelin</creatorcontrib><creatorcontrib>Yan, Chongnan</creatorcontrib><creatorcontrib>Wang, Lanbo</creatorcontrib><creatorcontrib>Mu, Yueming</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haixing</au><au>Luo, Haibo</au><au>Huan, Wang</au><au>Shi, Zelin</au><au>Yan, Chongnan</au><au>Wang, Lanbo</au><au>Mu, Yueming</au><au>Liu, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic lumbar spinal MRI image segmentation with a multi-scale attention network</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><addtitle>Neural Comput Appl</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>18</issue><spage>11589</spage><epage>11602</epage><pages>11589-11602</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Lumbar spinal stenosis (LSS) is a lumbar disease with a high incidence in recent years. Accurate segmentation of the vertebral body, lamina and dural sac is a key step in the diagnosis of LSS. This study presents an lumbar spine magnetic resonance imaging image segmentation method based on deep learning. In addition, we define the quantitative evaluation methods of two clinical indicators (that is the anteroposterior diameter of the spinal canal and the cross-sectional area of the dural sac) to assist LSS diagnosis. To improve the segmentation performance, a dual-branch multi-scale attention module is embedded into the network. It contains multi-scale feature extraction based on three 3 × 3 convolution operators and vital information selection based on attention mechanism. In the experiment, we used lumbar datasets from the spine surgery department of Shengjing Hospital of China Medical University to evaluate the effect of the method embedded the dual-branch multi-scale attention module. Compared with other state-of-the-art methods, the average dice similarity coefficient was improved from 0.9008 to 0.9252 and the average surface distance was decreased from 6.40 to 2.71 mm.</abstract><cop>London</cop><pub>Springer London</pub><pmid>33723476</pmid><doi>10.1007/s00521-021-05856-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6425-6433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-09, Vol.33 (18), p.11589-11602 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7945623 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Automation Back surgery Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Diabetic retinopathy Diagnosis Feature extraction Hospitals Image Processing and Computer Vision Image segmentation Machine learning Magnetic resonance imaging Medical imaging Medical research Modules Original Original Article Probability and Statistics in Computer Science Semantics Spinal stenosis |
title | Automatic lumbar spinal MRI image segmentation with a multi-scale attention network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20lumbar%20spinal%20MRI%20image%20segmentation%20with%20a%20multi-scale%20attention%20network&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Li,%20Haixing&rft.date=2021-09-01&rft.volume=33&rft.issue=18&rft.spage=11589&rft.epage=11602&rft.pages=11589-11602&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-05856-4&rft_dat=%3Cproquest_pubme%3E2501850604%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563568204&rft_id=info:pmid/33723476&rfr_iscdi=true |