ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival
Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we d...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2021-05, Vol.220 (5), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | The Journal of cell biology |
container_volume | 220 |
creator | Kim, Joohyung Kim, Sungdae Nahm, Minyeop Li, Tsai-Ning Lin, Hsin-Chieh Kim, Yeongjin David Lee, Jihye Yao, Chi-Kuang Lee, Seungbok |
description | Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival. |
doi_str_mv | 10.1083/jcb.202007112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7944400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2530511352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-67b6cb140104bbbc0c8d70d236db87d048c1a8b614ba031b9a11769480f93eb13</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi3UqmyhR64oUi8cCMzYTmJfKiHUL2mlHoCzZTvOkiWxUztZiX9fI2BVOM1hnnn1jh5CThAuEAS73FpzQYECNIj0gKyw4lAK5PCBrAAolrKi1SH5nNIWAHjD2SdyyFgtGBV8Re6u1je0iG6zDHp2qXC-DSmMeijmqLuutw-935wXU0hzevR6mntbtG7nhjCNzs_nhfZt4d0Sg883aYm7fqeHY_Kx00NyX17mEbn78f32-le5_vPz9_XVurRc4FzWjamtyV0RuDHGghVtAy1ldWtE0wIXFrUwNXKjgaGRGrGpJRfQSeYMsiPy7Tl3WszoWpsbRT2oKfajjo8q6F693fj-Xm3CTjWScw6QA85eAmL4u7g0q7FP1g2D9i4sSVEuJYCUgmb06zt0G5aYv85UxaBCZNUTVT5TNoaUouv2ZRDUkzCVham9sMyf_v_Bnn41xP4BWYmR5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530511352</pqid></control><display><type>article</type><title>ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Joohyung ; Kim, Sungdae ; Nahm, Minyeop ; Li, Tsai-Ning ; Lin, Hsin-Chieh ; Kim, Yeongjin David ; Lee, Jihye ; Yao, Chi-Kuang ; Lee, Seungbok</creator><creatorcontrib>Kim, Joohyung ; Kim, Sungdae ; Nahm, Minyeop ; Li, Tsai-Ning ; Lin, Hsin-Chieh ; Kim, Yeongjin David ; Lee, Jihye ; Yao, Chi-Kuang ; Lee, Seungbok</creatorcontrib><description>Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.202007112</identifier><identifier>PMID: 33683284</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Age ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - metabolism ; Animals ; Biological Transport - physiology ; C-Terminus ; Cell Death - genetics ; Cell Survival - genetics ; Cells, Cultured ; Defects ; Disease Models, Animal ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Endosomes ; Endosomes - genetics ; Endosomes - metabolism ; Endosomes - physiology ; Frizzled protein ; Fruit flies ; GTP-binding protein ; Guanine ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Homology ; Insects ; Juveniles ; Motor neuron diseases ; Mutation ; Mutation - genetics ; Neurodegeneration ; Neurons - metabolism ; Neurons - physiology ; Neuroscience ; Nuclear transport ; Nucleotides ; Phenotype ; Phenotypes ; Physiological effects ; Post-Synaptic Density - genetics ; Post-Synaptic Density - metabolism ; Post-Synaptic Density - physiology ; Protein transport ; rab5 GTP-Binding Proteins - genetics ; rab5 GTP-Binding Proteins - metabolism ; Rab5 protein ; Survival ; Synaptogenesis ; Trafficking</subject><ispartof>The Journal of cell biology, 2021-05, Vol.220 (5), p.1</ispartof><rights>2021 Kim et al.</rights><rights>Copyright Rockefeller University Press May 2021</rights><rights>2021 Kim et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-67b6cb140104bbbc0c8d70d236db87d048c1a8b614ba031b9a11769480f93eb13</citedby><cites>FETCH-LOGICAL-c481t-67b6cb140104bbbc0c8d70d236db87d048c1a8b614ba031b9a11769480f93eb13</cites><orcidid>0000-0002-5921-1879 ; 0000-0002-3107-5940 ; 0000-0003-0195-145X ; 0000-0002-6620-6269 ; 0000-0003-0977-4347 ; 0000-0002-6617-7322 ; 0000-0002-0685-6964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33683284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Joohyung</creatorcontrib><creatorcontrib>Kim, Sungdae</creatorcontrib><creatorcontrib>Nahm, Minyeop</creatorcontrib><creatorcontrib>Li, Tsai-Ning</creatorcontrib><creatorcontrib>Lin, Hsin-Chieh</creatorcontrib><creatorcontrib>Kim, Yeongjin David</creatorcontrib><creatorcontrib>Lee, Jihye</creatorcontrib><creatorcontrib>Yao, Chi-Kuang</creatorcontrib><creatorcontrib>Lee, Seungbok</creatorcontrib><title>ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival.</description><subject>Age</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Animals</subject><subject>Biological Transport - physiology</subject><subject>C-Terminus</subject><subject>Cell Death - genetics</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>Defects</subject><subject>Disease Models, Animal</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Endosomes</subject><subject>Endosomes - genetics</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - physiology</subject><subject>Frizzled protein</subject><subject>Fruit flies</subject><subject>GTP-binding protein</subject><subject>Guanine</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Homology</subject><subject>Insects</subject><subject>Juveniles</subject><subject>Motor neuron diseases</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Nuclear transport</subject><subject>Nucleotides</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiological effects</subject><subject>Post-Synaptic Density - genetics</subject><subject>Post-Synaptic Density - metabolism</subject><subject>Post-Synaptic Density - physiology</subject><subject>Protein transport</subject><subject>rab5 GTP-Binding Proteins - genetics</subject><subject>rab5 GTP-Binding Proteins - metabolism</subject><subject>Rab5 protein</subject><subject>Survival</subject><subject>Synaptogenesis</subject><subject>Trafficking</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhi3UqmyhR64oUi8cCMzYTmJfKiHUL2mlHoCzZTvOkiWxUztZiX9fI2BVOM1hnnn1jh5CThAuEAS73FpzQYECNIj0gKyw4lAK5PCBrAAolrKi1SH5nNIWAHjD2SdyyFgtGBV8Re6u1je0iG6zDHp2qXC-DSmMeijmqLuutw-935wXU0hzevR6mntbtG7nhjCNzs_nhfZt4d0Sg883aYm7fqeHY_Kx00NyX17mEbn78f32-le5_vPz9_XVurRc4FzWjamtyV0RuDHGghVtAy1ldWtE0wIXFrUwNXKjgaGRGrGpJRfQSeYMsiPy7Tl3WszoWpsbRT2oKfajjo8q6F693fj-Xm3CTjWScw6QA85eAmL4u7g0q7FP1g2D9i4sSVEuJYCUgmb06zt0G5aYv85UxaBCZNUTVT5TNoaUouv2ZRDUkzCVham9sMyf_v_Bnn41xP4BWYmR5w</recordid><startdate>20210503</startdate><enddate>20210503</enddate><creator>Kim, Joohyung</creator><creator>Kim, Sungdae</creator><creator>Nahm, Minyeop</creator><creator>Li, Tsai-Ning</creator><creator>Lin, Hsin-Chieh</creator><creator>Kim, Yeongjin David</creator><creator>Lee, Jihye</creator><creator>Yao, Chi-Kuang</creator><creator>Lee, Seungbok</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5921-1879</orcidid><orcidid>https://orcid.org/0000-0002-3107-5940</orcidid><orcidid>https://orcid.org/0000-0003-0195-145X</orcidid><orcidid>https://orcid.org/0000-0002-6620-6269</orcidid><orcidid>https://orcid.org/0000-0003-0977-4347</orcidid><orcidid>https://orcid.org/0000-0002-6617-7322</orcidid><orcidid>https://orcid.org/0000-0002-0685-6964</orcidid></search><sort><creationdate>20210503</creationdate><title>ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival</title><author>Kim, Joohyung ; Kim, Sungdae ; Nahm, Minyeop ; Li, Tsai-Ning ; Lin, Hsin-Chieh ; Kim, Yeongjin David ; Lee, Jihye ; Yao, Chi-Kuang ; Lee, Seungbok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-67b6cb140104bbbc0c8d70d236db87d048c1a8b614ba031b9a11769480f93eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Animals</topic><topic>Biological Transport - physiology</topic><topic>C-Terminus</topic><topic>Cell Death - genetics</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>Defects</topic><topic>Disease Models, Animal</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Endosomes</topic><topic>Endosomes - genetics</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - physiology</topic><topic>Frizzled protein</topic><topic>Fruit flies</topic><topic>GTP-binding protein</topic><topic>Guanine</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Homology</topic><topic>Insects</topic><topic>Juveniles</topic><topic>Motor neuron diseases</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Nuclear transport</topic><topic>Nucleotides</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiological effects</topic><topic>Post-Synaptic Density - genetics</topic><topic>Post-Synaptic Density - metabolism</topic><topic>Post-Synaptic Density - physiology</topic><topic>Protein transport</topic><topic>rab5 GTP-Binding Proteins - genetics</topic><topic>rab5 GTP-Binding Proteins - metabolism</topic><topic>Rab5 protein</topic><topic>Survival</topic><topic>Synaptogenesis</topic><topic>Trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Joohyung</creatorcontrib><creatorcontrib>Kim, Sungdae</creatorcontrib><creatorcontrib>Nahm, Minyeop</creatorcontrib><creatorcontrib>Li, Tsai-Ning</creatorcontrib><creatorcontrib>Lin, Hsin-Chieh</creatorcontrib><creatorcontrib>Kim, Yeongjin David</creatorcontrib><creatorcontrib>Lee, Jihye</creatorcontrib><creatorcontrib>Yao, Chi-Kuang</creatorcontrib><creatorcontrib>Lee, Seungbok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Joohyung</au><au>Kim, Sungdae</au><au>Nahm, Minyeop</au><au>Li, Tsai-Ning</au><au>Lin, Hsin-Chieh</au><au>Kim, Yeongjin David</au><au>Lee, Jihye</au><au>Yao, Chi-Kuang</au><au>Lee, Seungbok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2021-05-03</date><risdate>2021</risdate><volume>220</volume><issue>5</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>33683284</pmid><doi>10.1083/jcb.202007112</doi><orcidid>https://orcid.org/0000-0002-5921-1879</orcidid><orcidid>https://orcid.org/0000-0002-3107-5940</orcidid><orcidid>https://orcid.org/0000-0003-0195-145X</orcidid><orcidid>https://orcid.org/0000-0002-6620-6269</orcidid><orcidid>https://orcid.org/0000-0003-0977-4347</orcidid><orcidid>https://orcid.org/0000-0002-6617-7322</orcidid><orcidid>https://orcid.org/0000-0002-0685-6964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2021-05, Vol.220 (5), p.1 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7944400 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Age Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Animals Biological Transport - physiology C-Terminus Cell Death - genetics Cell Survival - genetics Cells, Cultured Defects Disease Models, Animal Drosophila Drosophila - genetics Drosophila - metabolism Drosophila - physiology Drosophila Proteins - genetics Drosophila Proteins - metabolism Endosomes Endosomes - genetics Endosomes - metabolism Endosomes - physiology Frizzled protein Fruit flies GTP-binding protein Guanine Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism Homology Insects Juveniles Motor neuron diseases Mutation Mutation - genetics Neurodegeneration Neurons - metabolism Neurons - physiology Neuroscience Nuclear transport Nucleotides Phenotype Phenotypes Physiological effects Post-Synaptic Density - genetics Post-Synaptic Density - metabolism Post-Synaptic Density - physiology Protein transport rab5 GTP-Binding Proteins - genetics rab5 GTP-Binding Proteins - metabolism Rab5 protein Survival Synaptogenesis Trafficking |
title | ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALS2%20regulates%20endosomal%20trafficking,%20postsynaptic%20development,%20and%20neuronal%20survival&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kim,%20Joohyung&rft.date=2021-05-03&rft.volume=220&rft.issue=5&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.202007112&rft_dat=%3Cproquest_pubme%3E2530511352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530511352&rft_id=info:pmid/33683284&rfr_iscdi=true |