S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos
Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2021-03, Vol.54 (3), p.e12990-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e12990 |
container_title | Cell proliferation |
container_volume | 54 |
creator | Niu, Ying‐Jie Zhou, Dongjie Cui, Xiang‐Shun |
description | Objectives
S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development.
Materials and Methods
GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR.
Results
GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos.
Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be re |
doi_str_mv | 10.1111/cpr.12990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478778682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</originalsourceid><addsrcrecordid>eNp9ksuOFCEUhitG47SjC1_AkLjRRc8Axa02JpOOt2QSjZc1OUVR3UwKKIHS9M5HcOUD-iQy9jhxTJRAzoKP__DD3zQPCT4hdZyaOZ0Q2nX4VrMireBrShS73axwJ_BaSkqPmns5X2BMWiLF3eaobRlXHSOr5vv7H1-_BVdSzHE7LQXKzsVgUbLDYgpkizy4UOrKyLsSzS6GITmY0C56G3NFXEb9Hs0p-lhc2CIzWUgQjEVxRAN42NrhxlnkAppjMq72mZN1fp6gtii1MbK-T_uY7zd3RpiyfXBVj5uPL55_2Lxan795-Xpzdr42TBK85tCLOqXprSEgWEcHYrgUFIQcOwYts8AlHnreUw4tEVwxPvBWjgBjb7r2uHl20J2X3tvB2FASTHpOzkPa6whO39wJbqe38bOW9fUoVVXgyZVAip8Wm4v2Lhs7VUc2LllTJpWUSiha0cd_oRdxSaHa01RR3mIhCP8vxTqlOsrwpdbTA2Xqx-Vkx-srE6wvM6FrJvSvTFT20Z8er8nfIajA6QH44ia7_7eS3rx9d5D8CT0VxwE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498892402</pqid></control><display><type>article</type><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</creator><creatorcontrib>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</creatorcontrib><description>Objectives
S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development.
Materials and Methods
GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR.
Results
GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos.
Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.12990</identifier><identifier>PMID: 33458941</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Aldehyde Oxidoreductases - drug effects ; Animals ; Apoptosis ; Arginine ; Autophagy ; Autophagy - drug effects ; Blastocyst - metabolism ; Cell death ; Clearances ; Damage accumulation ; Depolarization ; DNA damage ; Double-stranded RNA ; Embryos ; Fluorescent indicators ; GSNOR ; Homeostasis ; Homeostasis - drug effects ; Immunofluorescence ; Laboratory animals ; Mammals ; Membrane potential ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; NG-Nitroarginine methyl ester ; Nitric oxide ; Nitric Oxide - metabolism ; Original ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidoreductases - metabolism ; Phagocytosis ; Phosphorylation ; Physiology ; Polyvinyl alcohol ; porcine ; preimplantation embryos ; Protein S ; Proteins ; Quality control ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reductases ; Reverse transcription ; S-Nitrosoglutathione - pharmacology ; Supplements ; Swine ; S‐nitrosylation</subject><ispartof>Cell proliferation, 2021-03, Vol.54 (3), p.e12990-n/a</ispartof><rights>2021 The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</citedby><cites>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</cites><orcidid>0000-0002-4065-0732 ; 0000-0003-1829-1718 ; 0000-0003-3492-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33458941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Ying‐Jie</creatorcontrib><creatorcontrib>Zhou, Dongjie</creatorcontrib><creatorcontrib>Cui, Xiang‐Shun</creatorcontrib><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Objectives
S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development.
Materials and Methods
GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR.
Results
GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos.
Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</description><subject>Aldehyde Oxidoreductases - drug effects</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Arginine</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Blastocyst - metabolism</subject><subject>Cell death</subject><subject>Clearances</subject><subject>Damage accumulation</subject><subject>Depolarization</subject><subject>DNA damage</subject><subject>Double-stranded RNA</subject><subject>Embryos</subject><subject>Fluorescent indicators</subject><subject>GSNOR</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Immunofluorescence</subject><subject>Laboratory animals</subject><subject>Mammals</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>NG-Nitroarginine methyl ester</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidoreductases - metabolism</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Polyvinyl alcohol</subject><subject>porcine</subject><subject>preimplantation embryos</subject><subject>Protein S</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reductases</subject><subject>Reverse transcription</subject><subject>S-Nitrosoglutathione - pharmacology</subject><subject>Supplements</subject><subject>Swine</subject><subject>S‐nitrosylation</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksuOFCEUhitG47SjC1_AkLjRRc8Axa02JpOOt2QSjZc1OUVR3UwKKIHS9M5HcOUD-iQy9jhxTJRAzoKP__DD3zQPCT4hdZyaOZ0Q2nX4VrMireBrShS73axwJ_BaSkqPmns5X2BMWiLF3eaobRlXHSOr5vv7H1-_BVdSzHE7LQXKzsVgUbLDYgpkizy4UOrKyLsSzS6GITmY0C56G3NFXEb9Hs0p-lhc2CIzWUgQjEVxRAN42NrhxlnkAppjMq72mZN1fp6gtii1MbK-T_uY7zd3RpiyfXBVj5uPL55_2Lxan795-Xpzdr42TBK85tCLOqXprSEgWEcHYrgUFIQcOwYts8AlHnreUw4tEVwxPvBWjgBjb7r2uHl20J2X3tvB2FASTHpOzkPa6whO39wJbqe38bOW9fUoVVXgyZVAip8Wm4v2Lhs7VUc2LllTJpWUSiha0cd_oRdxSaHa01RR3mIhCP8vxTqlOsrwpdbTA2Xqx-Vkx-srE6wvM6FrJvSvTFT20Z8er8nfIajA6QH44ia7_7eS3rx9d5D8CT0VxwE</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Niu, Ying‐Jie</creator><creator>Zhou, Dongjie</creator><creator>Cui, Xiang‐Shun</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4065-0732</orcidid><orcidid>https://orcid.org/0000-0003-1829-1718</orcidid><orcidid>https://orcid.org/0000-0003-3492-2698</orcidid></search><sort><creationdate>202103</creationdate><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><author>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aldehyde Oxidoreductases - drug effects</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Arginine</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Blastocyst - metabolism</topic><topic>Cell death</topic><topic>Clearances</topic><topic>Damage accumulation</topic><topic>Depolarization</topic><topic>DNA damage</topic><topic>Double-stranded RNA</topic><topic>Embryos</topic><topic>Fluorescent indicators</topic><topic>GSNOR</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Immunofluorescence</topic><topic>Laboratory animals</topic><topic>Mammals</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>NG-Nitroarginine methyl ester</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidoreductases - metabolism</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Polyvinyl alcohol</topic><topic>porcine</topic><topic>preimplantation embryos</topic><topic>Protein S</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reductases</topic><topic>Reverse transcription</topic><topic>S-Nitrosoglutathione - pharmacology</topic><topic>Supplements</topic><topic>Swine</topic><topic>S‐nitrosylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Ying‐Jie</creatorcontrib><creatorcontrib>Zhou, Dongjie</creatorcontrib><creatorcontrib>Cui, Xiang‐Shun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Ying‐Jie</au><au>Zhou, Dongjie</au><au>Cui, Xiang‐Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2021-03</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>e12990</spage><epage>n/a</epage><pages>e12990-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Objectives
S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development.
Materials and Methods
GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR.
Results
GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos.
Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33458941</pmid><doi>10.1111/cpr.12990</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4065-0732</orcidid><orcidid>https://orcid.org/0000-0003-1829-1718</orcidid><orcidid>https://orcid.org/0000-0003-3492-2698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7722 |
ispartof | Cell proliferation, 2021-03, Vol.54 (3), p.e12990-n/a |
issn | 0960-7722 1365-2184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941228 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central |
subjects | Aldehyde Oxidoreductases - drug effects Animals Apoptosis Arginine Autophagy Autophagy - drug effects Blastocyst - metabolism Cell death Clearances Damage accumulation Depolarization DNA damage Double-stranded RNA Embryos Fluorescent indicators GSNOR Homeostasis Homeostasis - drug effects Immunofluorescence Laboratory animals Mammals Membrane potential Mitochondria Mitochondria - drug effects Mitochondria - metabolism NG-Nitroarginine methyl ester Nitric oxide Nitric Oxide - metabolism Original Oxidative stress Oxidative Stress - drug effects Oxidoreductases - metabolism Phagocytosis Phosphorylation Physiology Polyvinyl alcohol porcine preimplantation embryos Protein S Proteins Quality control Reactive oxygen species Reactive Oxygen Species - metabolism Reductases Reverse transcription S-Nitrosoglutathione - pharmacology Supplements Swine S‐nitrosylation |
title | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S%E2%80%90nitrosoglutathione%20reductase%20maintains%20mitochondrial%20homeostasis%20by%20promoting%20clearance%20of%20damaged%20mitochondria%20in%20porcine%20preimplantation%20embryos&rft.jtitle=Cell%20proliferation&rft.au=Niu,%20Ying%E2%80%90Jie&rft.date=2021-03&rft.volume=54&rft.issue=3&rft.spage=e12990&rft.epage=n/a&rft.pages=e12990-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.12990&rft_dat=%3Cproquest_pubme%3E2478778682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498892402&rft_id=info:pmid/33458941&rfr_iscdi=true |