S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos

Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell proliferation 2021-03, Vol.54 (3), p.e12990-n/a
Hauptverfasser: Niu, Ying‐Jie, Zhou, Dongjie, Cui, Xiang‐Shun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e12990
container_title Cell proliferation
container_volume 54
creator Niu, Ying‐Jie
Zhou, Dongjie
Cui, Xiang‐Shun
description Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. Materials and Methods GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. Results GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be re
doi_str_mv 10.1111/cpr.12990
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478778682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</originalsourceid><addsrcrecordid>eNp9ksuOFCEUhitG47SjC1_AkLjRRc8Axa02JpOOt2QSjZc1OUVR3UwKKIHS9M5HcOUD-iQy9jhxTJRAzoKP__DD3zQPCT4hdZyaOZ0Q2nX4VrMireBrShS73axwJ_BaSkqPmns5X2BMWiLF3eaobRlXHSOr5vv7H1-_BVdSzHE7LQXKzsVgUbLDYgpkizy4UOrKyLsSzS6GITmY0C56G3NFXEb9Hs0p-lhc2CIzWUgQjEVxRAN42NrhxlnkAppjMq72mZN1fp6gtii1MbK-T_uY7zd3RpiyfXBVj5uPL55_2Lxan795-Xpzdr42TBK85tCLOqXprSEgWEcHYrgUFIQcOwYts8AlHnreUw4tEVwxPvBWjgBjb7r2uHl20J2X3tvB2FASTHpOzkPa6whO39wJbqe38bOW9fUoVVXgyZVAip8Wm4v2Lhs7VUc2LllTJpWUSiha0cd_oRdxSaHa01RR3mIhCP8vxTqlOsrwpdbTA2Xqx-Vkx-srE6wvM6FrJvSvTFT20Z8er8nfIajA6QH44ia7_7eS3rx9d5D8CT0VxwE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498892402</pqid></control><display><type>article</type><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</creator><creatorcontrib>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</creatorcontrib><description>Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. Materials and Methods GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. Results GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.12990</identifier><identifier>PMID: 33458941</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aldehyde Oxidoreductases - drug effects ; Animals ; Apoptosis ; Arginine ; Autophagy ; Autophagy - drug effects ; Blastocyst - metabolism ; Cell death ; Clearances ; Damage accumulation ; Depolarization ; DNA damage ; Double-stranded RNA ; Embryos ; Fluorescent indicators ; GSNOR ; Homeostasis ; Homeostasis - drug effects ; Immunofluorescence ; Laboratory animals ; Mammals ; Membrane potential ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; NG-Nitroarginine methyl ester ; Nitric oxide ; Nitric Oxide - metabolism ; Original ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidoreductases - metabolism ; Phagocytosis ; Phosphorylation ; Physiology ; Polyvinyl alcohol ; porcine ; preimplantation embryos ; Protein S ; Proteins ; Quality control ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reductases ; Reverse transcription ; S-Nitrosoglutathione - pharmacology ; Supplements ; Swine ; S‐nitrosylation</subject><ispartof>Cell proliferation, 2021-03, Vol.54 (3), p.e12990-n/a</ispartof><rights>2021 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Cell Proliferation Published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</citedby><cites>FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</cites><orcidid>0000-0002-4065-0732 ; 0000-0003-1829-1718 ; 0000-0003-3492-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33458941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Ying‐Jie</creatorcontrib><creatorcontrib>Zhou, Dongjie</creatorcontrib><creatorcontrib>Cui, Xiang‐Shun</creatorcontrib><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. Materials and Methods GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. Results GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</description><subject>Aldehyde Oxidoreductases - drug effects</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Arginine</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Blastocyst - metabolism</subject><subject>Cell death</subject><subject>Clearances</subject><subject>Damage accumulation</subject><subject>Depolarization</subject><subject>DNA damage</subject><subject>Double-stranded RNA</subject><subject>Embryos</subject><subject>Fluorescent indicators</subject><subject>GSNOR</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Immunofluorescence</subject><subject>Laboratory animals</subject><subject>Mammals</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>NG-Nitroarginine methyl ester</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidoreductases - metabolism</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Polyvinyl alcohol</subject><subject>porcine</subject><subject>preimplantation embryos</subject><subject>Protein S</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reductases</subject><subject>Reverse transcription</subject><subject>S-Nitrosoglutathione - pharmacology</subject><subject>Supplements</subject><subject>Swine</subject><subject>S‐nitrosylation</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksuOFCEUhitG47SjC1_AkLjRRc8Axa02JpOOt2QSjZc1OUVR3UwKKIHS9M5HcOUD-iQy9jhxTJRAzoKP__DD3zQPCT4hdZyaOZ0Q2nX4VrMireBrShS73axwJ_BaSkqPmns5X2BMWiLF3eaobRlXHSOr5vv7H1-_BVdSzHE7LQXKzsVgUbLDYgpkizy4UOrKyLsSzS6GITmY0C56G3NFXEb9Hs0p-lhc2CIzWUgQjEVxRAN42NrhxlnkAppjMq72mZN1fp6gtii1MbK-T_uY7zd3RpiyfXBVj5uPL55_2Lxan795-Xpzdr42TBK85tCLOqXprSEgWEcHYrgUFIQcOwYts8AlHnreUw4tEVwxPvBWjgBjb7r2uHl20J2X3tvB2FASTHpOzkPa6whO39wJbqe38bOW9fUoVVXgyZVAip8Wm4v2Lhs7VUc2LllTJpWUSiha0cd_oRdxSaHa01RR3mIhCP8vxTqlOsrwpdbTA2Xqx-Vkx-srE6wvM6FrJvSvTFT20Z8er8nfIajA6QH44ia7_7eS3rx9d5D8CT0VxwE</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Niu, Ying‐Jie</creator><creator>Zhou, Dongjie</creator><creator>Cui, Xiang‐Shun</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4065-0732</orcidid><orcidid>https://orcid.org/0000-0003-1829-1718</orcidid><orcidid>https://orcid.org/0000-0003-3492-2698</orcidid></search><sort><creationdate>202103</creationdate><title>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</title><author>Niu, Ying‐Jie ; Zhou, Dongjie ; Cui, Xiang‐Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4710-5ab6ab67cbec1a6492d1c5762a67f94a34ea570db5b25a3165845d537faafbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aldehyde Oxidoreductases - drug effects</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Arginine</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Blastocyst - metabolism</topic><topic>Cell death</topic><topic>Clearances</topic><topic>Damage accumulation</topic><topic>Depolarization</topic><topic>DNA damage</topic><topic>Double-stranded RNA</topic><topic>Embryos</topic><topic>Fluorescent indicators</topic><topic>GSNOR</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Immunofluorescence</topic><topic>Laboratory animals</topic><topic>Mammals</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>NG-Nitroarginine methyl ester</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidoreductases - metabolism</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Polyvinyl alcohol</topic><topic>porcine</topic><topic>preimplantation embryos</topic><topic>Protein S</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reductases</topic><topic>Reverse transcription</topic><topic>S-Nitrosoglutathione - pharmacology</topic><topic>Supplements</topic><topic>Swine</topic><topic>S‐nitrosylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Ying‐Jie</creatorcontrib><creatorcontrib>Zhou, Dongjie</creatorcontrib><creatorcontrib>Cui, Xiang‐Shun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Ying‐Jie</au><au>Zhou, Dongjie</au><au>Cui, Xiang‐Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2021-03</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>e12990</spage><epage>n/a</epage><pages>e12990-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Objectives S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. Materials and Methods GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. Results GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. Mitophagy and mitochondrial biogenesis maintain mitochondrial function and contents via promoting damaged mitochondrial clearance, and production of new and healthy mitochondria. Furthermore, autophagy degrades unnecessary proteins and dysfunctional organelles. However, decrease in GSNOR protein levels by knock‐down of GSNOR mRNA induces an increase in protein SNOs and prevents mitophagy and autophagy. Thus, GSNOR knock‐down further induces accumulation of damaged mitochondria, oxidative stress and cell death. These harmful effects could be reversed via treatment with L‐NAME.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33458941</pmid><doi>10.1111/cpr.12990</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4065-0732</orcidid><orcidid>https://orcid.org/0000-0003-1829-1718</orcidid><orcidid>https://orcid.org/0000-0003-3492-2698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7722
ispartof Cell proliferation, 2021-03, Vol.54 (3), p.e12990-n/a
issn 0960-7722
1365-2184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941228
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Aldehyde Oxidoreductases - drug effects
Animals
Apoptosis
Arginine
Autophagy
Autophagy - drug effects
Blastocyst - metabolism
Cell death
Clearances
Damage accumulation
Depolarization
DNA damage
Double-stranded RNA
Embryos
Fluorescent indicators
GSNOR
Homeostasis
Homeostasis - drug effects
Immunofluorescence
Laboratory animals
Mammals
Membrane potential
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
NG-Nitroarginine methyl ester
Nitric oxide
Nitric Oxide - metabolism
Original
Oxidative stress
Oxidative Stress - drug effects
Oxidoreductases - metabolism
Phagocytosis
Phosphorylation
Physiology
Polyvinyl alcohol
porcine
preimplantation embryos
Protein S
Proteins
Quality control
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reductases
Reverse transcription
S-Nitrosoglutathione - pharmacology
Supplements
Swine
S‐nitrosylation
title S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S%E2%80%90nitrosoglutathione%20reductase%20maintains%20mitochondrial%20homeostasis%20by%20promoting%20clearance%20of%20damaged%20mitochondria%20in%20porcine%20preimplantation%20embryos&rft.jtitle=Cell%20proliferation&rft.au=Niu,%20Ying%E2%80%90Jie&rft.date=2021-03&rft.volume=54&rft.issue=3&rft.spage=e12990&rft.epage=n/a&rft.pages=e12990-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.12990&rft_dat=%3Cproquest_pubme%3E2478778682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498892402&rft_id=info:pmid/33458941&rfr_iscdi=true