Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) p...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-03, Vol.81 (5), p.1084-1099.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1099.e6 |
---|---|
container_issue | 5 |
container_start_page | 1084 |
container_title | Molecular cell |
container_volume | 81 |
creator | Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja |
description | Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
[Display omitted]
•Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR
By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks. |
doi_str_mv | 10.1016/j.molcel.2020.12.025 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520309461</els_id><sourcerecordid>33450211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EoqXwBgj5BbJ4nDib3CCtyq9U2l6Ua2tiT4p3EzvYyUp9Cl4ZL1sKveFq7LHOOTP-GHsNYgUC6rfb1RgGQ8NKCplbciWkesJOQbTrooK6enp_lutanbAXKW2FgEo17XN2UpaVEhLglP28jmGmMBK3dx5HZxLHmXcx7MjzSNPgDM4ueN6HuEu5syccOHLr0uy8mfnm5mthXSQzkz0I0MVc0hR8Ip6WacqX5Pwtf3-54TYs3UBFmiN6m1MId3zp3I_FZbPfOS_Zsx6HRK_u6xn79vHDzfnn4uLq05fzzUVhlGznwjYlUNdWDVjqAUnVSFBjrWzTNLIyHdVEpHosLZom74pC9GDFmkBQQ6Y8Y--OvtPSjWQN-TzToKfoRox3OqDTj1-8-65vw16v27JVErJBdTQwMaQUqX_QgtAHQHqrj4D0AZAGqTOgLHvzb-6D6A-Rv4NR3n7vKOpkHHlDx0_WNrj_J_wC7P2qBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</creator><creatorcontrib>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</creatorcontrib><description>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
[Display omitted]
•Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR
By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.12.025</identifier><identifier>PMID: 33450211</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATM ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; BRCA1-A ; Camptothecin ; Camptothecin - pharmacology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line, Tumor ; Chromatin - chemistry ; Chromatin - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Replication ; DNA Topoisomerases, Type I - genetics ; DNA Topoisomerases, Type I - metabolism ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; G1 Phase Cell Cycle Checkpoints - drug effects ; Gene Expression Regulation ; HeLa Cells ; homologous recombination ; Humans ; nascent chromatin capture ; NDRG3 ; NHEJ ; PLK1 ; Polo-Like Kinase 1 ; Protein Binding ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteomics - methods ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Pyridines - pharmacology ; Quinolines - pharmacology ; Recombinational DNA Repair ; replication stress ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Topoisomerase I Inhibitors - pharmacology ; UBAP2 ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination - drug effects</subject><ispartof>Molecular cell, 2021-03, Vol.81 (5), p.1084-1099.e6</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</citedby><cites>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</cites><orcidid>0000-0003-1809-639X ; 0000-0003-0309-907X ; 0000-0001-8955-0866 ; 0000-0001-9758-2657 ; 0000-0001-5999-1310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276520309461$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33450211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Kyosuke</creatorcontrib><creatorcontrib>Kustatscher, Georg</creatorcontrib><creatorcontrib>Alabert, Constance</creatorcontrib><creatorcontrib>Hödl, Martina</creatorcontrib><creatorcontrib>Forne, Ignasi</creatorcontrib><creatorcontrib>Völker-Albert, Moritz</creatorcontrib><creatorcontrib>Satpathy, Shankha</creatorcontrib><creatorcontrib>Beyer, Tracey E.</creatorcontrib><creatorcontrib>Mailand, Niels</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
[Display omitted]
•Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR
By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</description><subject>Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATM</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>BRCA1-A</subject><subject>Camptothecin</subject><subject>Camptothecin - pharmacology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Replication</subject><subject>DNA Topoisomerases, Type I - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>G1 Phase Cell Cycle Checkpoints - drug effects</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>homologous recombination</subject><subject>Humans</subject><subject>nascent chromatin capture</subject><subject>NDRG3</subject><subject>NHEJ</subject><subject>PLK1</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Binding</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteomics - methods</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Quinolines - pharmacology</subject><subject>Recombinational DNA Repair</subject><subject>replication stress</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Topoisomerase I Inhibitors - pharmacology</subject><subject>UBAP2</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination - drug effects</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1u1DAQhS0EoqXwBgj5BbJ4nDib3CCtyq9U2l6Ua2tiT4p3EzvYyUp9Cl4ZL1sKveFq7LHOOTP-GHsNYgUC6rfb1RgGQ8NKCplbciWkesJOQbTrooK6enp_lutanbAXKW2FgEo17XN2UpaVEhLglP28jmGmMBK3dx5HZxLHmXcx7MjzSNPgDM4ueN6HuEu5syccOHLr0uy8mfnm5mthXSQzkz0I0MVc0hR8Ip6WacqX5Pwtf3-54TYs3UBFmiN6m1MId3zp3I_FZbPfOS_Zsx6HRK_u6xn79vHDzfnn4uLq05fzzUVhlGznwjYlUNdWDVjqAUnVSFBjrWzTNLIyHdVEpHosLZom74pC9GDFmkBQQ6Y8Y--OvtPSjWQN-TzToKfoRox3OqDTj1-8-65vw16v27JVErJBdTQwMaQUqX_QgtAHQHqrj4D0AZAGqTOgLHvzb-6D6A-Rv4NR3n7vKOpkHHlDx0_WNrj_J_wC7P2qBQ</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Nakamura, Kyosuke</creator><creator>Kustatscher, Georg</creator><creator>Alabert, Constance</creator><creator>Hödl, Martina</creator><creator>Forne, Ignasi</creator><creator>Völker-Albert, Moritz</creator><creator>Satpathy, Shankha</creator><creator>Beyer, Tracey E.</creator><creator>Mailand, Niels</creator><creator>Choudhary, Chunaram</creator><creator>Imhof, Axel</creator><creator>Rappsilber, Juri</creator><creator>Groth, Anja</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1809-639X</orcidid><orcidid>https://orcid.org/0000-0003-0309-907X</orcidid><orcidid>https://orcid.org/0000-0001-8955-0866</orcidid><orcidid>https://orcid.org/0000-0001-9758-2657</orcidid><orcidid>https://orcid.org/0000-0001-5999-1310</orcidid></search><sort><creationdate>20210304</creationdate><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><author>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATM</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>BRCA1-A</topic><topic>Camptothecin</topic><topic>Camptothecin - pharmacology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Replication</topic><topic>DNA Topoisomerases, Type I - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>G1 Phase Cell Cycle Checkpoints - drug effects</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>homologous recombination</topic><topic>Humans</topic><topic>nascent chromatin capture</topic><topic>NDRG3</topic><topic>NHEJ</topic><topic>PLK1</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Binding</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteomics - methods</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Quinolines - pharmacology</topic><topic>Recombinational DNA Repair</topic><topic>replication stress</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Topoisomerase I Inhibitors - pharmacology</topic><topic>UBAP2</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Kyosuke</creatorcontrib><creatorcontrib>Kustatscher, Georg</creatorcontrib><creatorcontrib>Alabert, Constance</creatorcontrib><creatorcontrib>Hödl, Martina</creatorcontrib><creatorcontrib>Forne, Ignasi</creatorcontrib><creatorcontrib>Völker-Albert, Moritz</creatorcontrib><creatorcontrib>Satpathy, Shankha</creatorcontrib><creatorcontrib>Beyer, Tracey E.</creatorcontrib><creatorcontrib>Mailand, Niels</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Kyosuke</au><au>Kustatscher, Georg</au><au>Alabert, Constance</au><au>Hödl, Martina</au><au>Forne, Ignasi</au><au>Völker-Albert, Moritz</au><au>Satpathy, Shankha</au><au>Beyer, Tracey E.</au><au>Mailand, Niels</au><au>Choudhary, Chunaram</au><au>Imhof, Axel</au><au>Rappsilber, Juri</au><au>Groth, Anja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>81</volume><issue>5</issue><spage>1084</spage><epage>1099.e6</epage><pages>1084-1099.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
[Display omitted]
•Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR
By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33450211</pmid><doi>10.1016/j.molcel.2020.12.025</doi><orcidid>https://orcid.org/0000-0003-1809-639X</orcidid><orcidid>https://orcid.org/0000-0003-0309-907X</orcidid><orcidid>https://orcid.org/0000-0001-8955-0866</orcidid><orcidid>https://orcid.org/0000-0001-9758-2657</orcidid><orcidid>https://orcid.org/0000-0001-5999-1310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-03, Vol.81 (5), p.1084-1099.e6 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939521 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors Ataxia Telangiectasia Mutated Proteins - genetics Ataxia Telangiectasia Mutated Proteins - metabolism ATM BRCA1 Protein - genetics BRCA1 Protein - metabolism BRCA1-A Camptothecin Camptothecin - pharmacology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line, Tumor Chromatin - chemistry Chromatin - metabolism DNA - genetics DNA - metabolism DNA Breaks, Double-Stranded DNA Replication DNA Topoisomerases, Type I - genetics DNA Topoisomerases, Type I - metabolism Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism G1 Phase Cell Cycle Checkpoints - drug effects Gene Expression Regulation HeLa Cells homologous recombination Humans nascent chromatin capture NDRG3 NHEJ PLK1 Polo-Like Kinase 1 Protein Binding Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteomics - methods Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Pyridines - pharmacology Quinolines - pharmacology Recombinational DNA Repair replication stress RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Signal Transduction Topoisomerase I Inhibitors - pharmacology UBAP2 Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination - drug effects |
title | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome%20dynamics%20at%20broken%20replication%20forks%20reveal%20a%20distinct%20ATM-directed%20repair%20response%20suppressing%20DNA%20double-strand%20break%20ubiquitination&rft.jtitle=Molecular%20cell&rft.au=Nakamura,%20Kyosuke&rft.date=2021-03-04&rft.volume=81&rft.issue=5&rft.spage=1084&rft.epage=1099.e6&rft.pages=1084-1099.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.12.025&rft_dat=%3Cpubmed_cross%3E33450211%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33450211&rft_els_id=S1097276520309461&rfr_iscdi=true |