Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-03, Vol.81 (5), p.1084-1099.e6
Hauptverfasser: Nakamura, Kyosuke, Kustatscher, Georg, Alabert, Constance, Hödl, Martina, Forne, Ignasi, Völker-Albert, Moritz, Satpathy, Shankha, Beyer, Tracey E., Mailand, Niels, Choudhary, Chunaram, Imhof, Axel, Rappsilber, Juri, Groth, Anja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099.e6
container_issue 5
container_start_page 1084
container_title Molecular cell
container_volume 81
creator Nakamura, Kyosuke
Kustatscher, Georg
Alabert, Constance
Hödl, Martina
Forne, Ignasi
Völker-Albert, Moritz
Satpathy, Shankha
Beyer, Tracey E.
Mailand, Niels
Choudhary, Chunaram
Imhof, Axel
Rappsilber, Juri
Groth, Anja
description Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. [Display omitted] •Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.
doi_str_mv 10.1016/j.molcel.2020.12.025
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520309461</els_id><sourcerecordid>33450211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EoqXwBgj5BbJ4nDib3CCtyq9U2l6Ua2tiT4p3EzvYyUp9Cl4ZL1sKveFq7LHOOTP-GHsNYgUC6rfb1RgGQ8NKCplbciWkesJOQbTrooK6enp_lutanbAXKW2FgEo17XN2UpaVEhLglP28jmGmMBK3dx5HZxLHmXcx7MjzSNPgDM4ueN6HuEu5syccOHLr0uy8mfnm5mthXSQzkz0I0MVc0hR8Ip6WacqX5Pwtf3-54TYs3UBFmiN6m1MId3zp3I_FZbPfOS_Zsx6HRK_u6xn79vHDzfnn4uLq05fzzUVhlGznwjYlUNdWDVjqAUnVSFBjrWzTNLIyHdVEpHosLZom74pC9GDFmkBQQ6Y8Y--OvtPSjWQN-TzToKfoRox3OqDTj1-8-65vw16v27JVErJBdTQwMaQUqX_QgtAHQHqrj4D0AZAGqTOgLHvzb-6D6A-Rv4NR3n7vKOpkHHlDx0_WNrj_J_wC7P2qBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</creator><creatorcontrib>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</creatorcontrib><description>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. [Display omitted] •Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.12.025</identifier><identifier>PMID: 33450211</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATM ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; BRCA1-A ; Camptothecin ; Camptothecin - pharmacology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line, Tumor ; Chromatin - chemistry ; Chromatin - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Replication ; DNA Topoisomerases, Type I - genetics ; DNA Topoisomerases, Type I - metabolism ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; G1 Phase Cell Cycle Checkpoints - drug effects ; Gene Expression Regulation ; HeLa Cells ; homologous recombination ; Humans ; nascent chromatin capture ; NDRG3 ; NHEJ ; PLK1 ; Polo-Like Kinase 1 ; Protein Binding ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proteomics - methods ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Pyridines - pharmacology ; Quinolines - pharmacology ; Recombinational DNA Repair ; replication stress ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Topoisomerase I Inhibitors - pharmacology ; UBAP2 ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination - drug effects</subject><ispartof>Molecular cell, 2021-03, Vol.81 (5), p.1084-1099.e6</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</citedby><cites>FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</cites><orcidid>0000-0003-1809-639X ; 0000-0003-0309-907X ; 0000-0001-8955-0866 ; 0000-0001-9758-2657 ; 0000-0001-5999-1310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276520309461$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33450211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Kyosuke</creatorcontrib><creatorcontrib>Kustatscher, Georg</creatorcontrib><creatorcontrib>Alabert, Constance</creatorcontrib><creatorcontrib>Hödl, Martina</creatorcontrib><creatorcontrib>Forne, Ignasi</creatorcontrib><creatorcontrib>Völker-Albert, Moritz</creatorcontrib><creatorcontrib>Satpathy, Shankha</creatorcontrib><creatorcontrib>Beyer, Tracey E.</creatorcontrib><creatorcontrib>Mailand, Niels</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. [Display omitted] •Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</description><subject>Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATM</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>BRCA1-A</subject><subject>Camptothecin</subject><subject>Camptothecin - pharmacology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Replication</subject><subject>DNA Topoisomerases, Type I - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>G1 Phase Cell Cycle Checkpoints - drug effects</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>homologous recombination</subject><subject>Humans</subject><subject>nascent chromatin capture</subject><subject>NDRG3</subject><subject>NHEJ</subject><subject>PLK1</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Binding</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteomics - methods</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Quinolines - pharmacology</subject><subject>Recombinational DNA Repair</subject><subject>replication stress</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Topoisomerase I Inhibitors - pharmacology</subject><subject>UBAP2</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination - drug effects</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1u1DAQhS0EoqXwBgj5BbJ4nDib3CCtyq9U2l6Ua2tiT4p3EzvYyUp9Cl4ZL1sKveFq7LHOOTP-GHsNYgUC6rfb1RgGQ8NKCplbciWkesJOQbTrooK6enp_lutanbAXKW2FgEo17XN2UpaVEhLglP28jmGmMBK3dx5HZxLHmXcx7MjzSNPgDM4ueN6HuEu5syccOHLr0uy8mfnm5mthXSQzkz0I0MVc0hR8Ip6WacqX5Pwtf3-54TYs3UBFmiN6m1MId3zp3I_FZbPfOS_Zsx6HRK_u6xn79vHDzfnn4uLq05fzzUVhlGznwjYlUNdWDVjqAUnVSFBjrWzTNLIyHdVEpHosLZom74pC9GDFmkBQQ6Y8Y--OvtPSjWQN-TzToKfoRox3OqDTj1-8-65vw16v27JVErJBdTQwMaQUqX_QgtAHQHqrj4D0AZAGqTOgLHvzb-6D6A-Rv4NR3n7vKOpkHHlDx0_WNrj_J_wC7P2qBQ</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Nakamura, Kyosuke</creator><creator>Kustatscher, Georg</creator><creator>Alabert, Constance</creator><creator>Hödl, Martina</creator><creator>Forne, Ignasi</creator><creator>Völker-Albert, Moritz</creator><creator>Satpathy, Shankha</creator><creator>Beyer, Tracey E.</creator><creator>Mailand, Niels</creator><creator>Choudhary, Chunaram</creator><creator>Imhof, Axel</creator><creator>Rappsilber, Juri</creator><creator>Groth, Anja</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1809-639X</orcidid><orcidid>https://orcid.org/0000-0003-0309-907X</orcidid><orcidid>https://orcid.org/0000-0001-8955-0866</orcidid><orcidid>https://orcid.org/0000-0001-9758-2657</orcidid><orcidid>https://orcid.org/0000-0001-5999-1310</orcidid></search><sort><creationdate>20210304</creationdate><title>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</title><author>Nakamura, Kyosuke ; Kustatscher, Georg ; Alabert, Constance ; Hödl, Martina ; Forne, Ignasi ; Völker-Albert, Moritz ; Satpathy, Shankha ; Beyer, Tracey E. ; Mailand, Niels ; Choudhary, Chunaram ; Imhof, Axel ; Rappsilber, Juri ; Groth, Anja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-d831eb9481def1ae56ae16a65d88824cbe6eee5fa3dac8502a00f1d07e10e8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATM</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>BRCA1-A</topic><topic>Camptothecin</topic><topic>Camptothecin - pharmacology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Replication</topic><topic>DNA Topoisomerases, Type I - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>G1 Phase Cell Cycle Checkpoints - drug effects</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>homologous recombination</topic><topic>Humans</topic><topic>nascent chromatin capture</topic><topic>NDRG3</topic><topic>NHEJ</topic><topic>PLK1</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Binding</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteomics - methods</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Quinolines - pharmacology</topic><topic>Recombinational DNA Repair</topic><topic>replication stress</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Topoisomerase I Inhibitors - pharmacology</topic><topic>UBAP2</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Kyosuke</creatorcontrib><creatorcontrib>Kustatscher, Georg</creatorcontrib><creatorcontrib>Alabert, Constance</creatorcontrib><creatorcontrib>Hödl, Martina</creatorcontrib><creatorcontrib>Forne, Ignasi</creatorcontrib><creatorcontrib>Völker-Albert, Moritz</creatorcontrib><creatorcontrib>Satpathy, Shankha</creatorcontrib><creatorcontrib>Beyer, Tracey E.</creatorcontrib><creatorcontrib>Mailand, Niels</creatorcontrib><creatorcontrib>Choudhary, Chunaram</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rappsilber, Juri</creatorcontrib><creatorcontrib>Groth, Anja</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Kyosuke</au><au>Kustatscher, Georg</au><au>Alabert, Constance</au><au>Hödl, Martina</au><au>Forne, Ignasi</au><au>Völker-Albert, Moritz</au><au>Satpathy, Shankha</au><au>Beyer, Tracey E.</au><au>Mailand, Niels</au><au>Choudhary, Chunaram</au><au>Imhof, Axel</au><au>Rappsilber, Juri</au><au>Groth, Anja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>81</volume><issue>5</issue><spage>1084</spage><epage>1099.e6</epage><pages>1084-1099.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. [Display omitted] •Comprehensive proteomics of replication forks damaged by TOP1 inhibition•Broken and stalled forks show distinct repairomes and chromatin environments•Rewiring of the broken fork proteome by ATM inhibition toward DSB ubiquitination•PLK1, NDRG3, and UBAP2 are promoting repair of broken forks by HR By systematic proteomics profiling of replication forks challenged by the topoisomerase I inhibitor camptothecin, Nakamura et al. identify dedicated repair factors for broken replication forks, characterize their chromatin environment, and reveal that ATM and PLK1 promote homologous recombination by suppressing the canonical DNA double-strand break ubiquitination response at broken forks.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33450211</pmid><doi>10.1016/j.molcel.2020.12.025</doi><orcidid>https://orcid.org/0000-0003-1809-639X</orcidid><orcidid>https://orcid.org/0000-0003-0309-907X</orcidid><orcidid>https://orcid.org/0000-0001-8955-0866</orcidid><orcidid>https://orcid.org/0000-0001-9758-2657</orcidid><orcidid>https://orcid.org/0000-0001-5999-1310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-03, Vol.81 (5), p.1084-1099.e6
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7939521
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
ATM
BRCA1 Protein - genetics
BRCA1 Protein - metabolism
BRCA1-A
Camptothecin
Camptothecin - pharmacology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Chromatin - chemistry
Chromatin - metabolism
DNA - genetics
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Replication
DNA Topoisomerases, Type I - genetics
DNA Topoisomerases, Type I - metabolism
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
G1 Phase Cell Cycle Checkpoints - drug effects
Gene Expression Regulation
HeLa Cells
homologous recombination
Humans
nascent chromatin capture
NDRG3
NHEJ
PLK1
Polo-Like Kinase 1
Protein Binding
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteomics - methods
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Pyridines - pharmacology
Quinolines - pharmacology
Recombinational DNA Repair
replication stress
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Signal Transduction
Topoisomerase I Inhibitors - pharmacology
UBAP2
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination - drug effects
title Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteome%20dynamics%20at%20broken%20replication%20forks%20reveal%20a%20distinct%20ATM-directed%20repair%20response%20suppressing%20DNA%20double-strand%20break%20ubiquitination&rft.jtitle=Molecular%20cell&rft.au=Nakamura,%20Kyosuke&rft.date=2021-03-04&rft.volume=81&rft.issue=5&rft.spage=1084&rft.epage=1099.e6&rft.pages=1084-1099.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.12.025&rft_dat=%3Cpubmed_cross%3E33450211%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33450211&rft_els_id=S1097276520309461&rfr_iscdi=true