BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell systems 2020-04, Vol.10 (4), p.333-350.e14
Hauptverfasser: Pourhaghighi, Reza, Ash, Peter E.A., Phanse, Sadhna, Goebels, Florian, Hu, Lucas Z.M., Chen, Siwei, Zhang, Yingying, Wierbowski, Shayne D., Boudeau, Samantha, Moutaoufik, Mohamed T., Malty, Ramy H., Malolepsza, Edyta, Tsafou, Kalliopi, Nathan, Aparna, Cromar, Graham, Guo, Hongbo, Abdullatif, Ali Al, Apicco, Daniel J., Becker, Lindsay A., Gitler, Aaron D., Pulst, Stefan M., Youssef, Ahmed, Hekman, Ryan, Havugimana, Pierre C., White, Carl A., Blum, Benjamin C., Ratti, Antonia, Bryant, Camron D., Parkinson, John, Lage, Kasper, Babu, Mohan, Yu, Haiyuan, Bader, Gary D., Wolozin, Benjamin, Emili, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350.e14
container_issue 4
container_start_page 333
container_title Cell systems
container_volume 10
creator Pourhaghighi, Reza
Ash, Peter E.A.
Phanse, Sadhna
Goebels, Florian
Hu, Lucas Z.M.
Chen, Siwei
Zhang, Yingying
Wierbowski, Shayne D.
Boudeau, Samantha
Moutaoufik, Mohamed T.
Malty, Ramy H.
Malolepsza, Edyta
Tsafou, Kalliopi
Nathan, Aparna
Cromar, Graham
Guo, Hongbo
Abdullatif, Ali Al
Apicco, Daniel J.
Becker, Lindsay A.
Gitler, Aaron D.
Pulst, Stefan M.
Youssef, Ahmed
Hekman, Ryan
Havugimana, Pierre C.
White, Carl A.
Blum, Benjamin C.
Ratti, Antonia
Bryant, Camron D.
Parkinson, John
Lage, Kasper
Babu, Mohan
Yu, Haiyuan
Bader, Gary D.
Wolozin, Benjamin
Emili, Andrew
description Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/. [Display omitted] •BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.
doi_str_mv 10.1016/j.cels.2020.03.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471220301095</els_id><sourcerecordid>2394906564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVoSUKSF8iieNnNuFd_1hhKoR2SNDChXTRrIUvXjQZbmkr2QN4-GiYd2k1WV0jfOVecQ8g1hZoCbT5taotDrhkwqIHXAPyEnDMBciEUg3fHM2Vn5CrnDQBQ0ZZLdkrOOONMAufn5Oe3ZO7Dg9lWN8NsvTMT5mp6wurB2BTHOKCdB5OqVQwB7eR3fnqu1ia4bM0Wq9gXcBzN4E2oipUPl-R9b4aMV6_zgjze3vxafV-sf9zdr76uF1ZIOS1cyxrOOtF2pumhzKVDKahdqkYgQ6eEU8uu74WyolWsl5KZppGUdlJ1PTh-Qb4cfLdzN6KzGKZkBr1NfjTpWUfj9f8vwT_p33GnVcuXSkEx-PhqkOKfGfOkR59LpoMJGOesGW9FC41sREHZAS2R5JywP66hoPdt6I3et6H3bWjgurRRRB_-_eBR8jf7Anw-AEWJO49JZ-sxWHQ-lai1i_4t_xfRxJwD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394906564</pqid></control><display><type>article</type><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</creator><creatorcontrib>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</creatorcontrib><description>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/. [Display omitted] •BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</description><identifier>ISSN: 2405-4712</identifier><identifier>ISSN: 2405-4720</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2020.03.003</identifier><identifier>PMID: 32325033</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ALS ; Amyotrophic Lateral Sclerosis - metabolism ; Animals ; Brain - metabolism ; Brain Mapping - methods ; BraInMap ; cofractionation/mass spectometry ; complexosome ; Connectome - methods ; DNA-Binding Proteins - genetics ; interaction network ; Machine Learning ; Mammals - physiology ; Mass Spectrometry - methods ; Mice ; Mutation - genetics ; neurodegeneration ; protein-protein interaction ; TDP-43</subject><ispartof>Cell systems, 2020-04, Vol.10 (4), p.333-350.e14</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</citedby><cites>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32325033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pourhaghighi, Reza</creatorcontrib><creatorcontrib>Ash, Peter E.A.</creatorcontrib><creatorcontrib>Phanse, Sadhna</creatorcontrib><creatorcontrib>Goebels, Florian</creatorcontrib><creatorcontrib>Hu, Lucas Z.M.</creatorcontrib><creatorcontrib>Chen, Siwei</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Wierbowski, Shayne D.</creatorcontrib><creatorcontrib>Boudeau, Samantha</creatorcontrib><creatorcontrib>Moutaoufik, Mohamed T.</creatorcontrib><creatorcontrib>Malty, Ramy H.</creatorcontrib><creatorcontrib>Malolepsza, Edyta</creatorcontrib><creatorcontrib>Tsafou, Kalliopi</creatorcontrib><creatorcontrib>Nathan, Aparna</creatorcontrib><creatorcontrib>Cromar, Graham</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Abdullatif, Ali Al</creatorcontrib><creatorcontrib>Apicco, Daniel J.</creatorcontrib><creatorcontrib>Becker, Lindsay A.</creatorcontrib><creatorcontrib>Gitler, Aaron D.</creatorcontrib><creatorcontrib>Pulst, Stefan M.</creatorcontrib><creatorcontrib>Youssef, Ahmed</creatorcontrib><creatorcontrib>Hekman, Ryan</creatorcontrib><creatorcontrib>Havugimana, Pierre C.</creatorcontrib><creatorcontrib>White, Carl A.</creatorcontrib><creatorcontrib>Blum, Benjamin C.</creatorcontrib><creatorcontrib>Ratti, Antonia</creatorcontrib><creatorcontrib>Bryant, Camron D.</creatorcontrib><creatorcontrib>Parkinson, John</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><creatorcontrib>Babu, Mohan</creatorcontrib><creatorcontrib>Yu, Haiyuan</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Wolozin, Benjamin</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/. [Display omitted] •BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</description><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain Mapping - methods</subject><subject>BraInMap</subject><subject>cofractionation/mass spectometry</subject><subject>complexosome</subject><subject>Connectome - methods</subject><subject>DNA-Binding Proteins - genetics</subject><subject>interaction network</subject><subject>Machine Learning</subject><subject>Mammals - physiology</subject><subject>Mass Spectrometry - methods</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>neurodegeneration</subject><subject>protein-protein interaction</subject><subject>TDP-43</subject><issn>2405-4712</issn><issn>2405-4720</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAUhUVoSUKSF8iieNnNuFd_1hhKoR2SNDChXTRrIUvXjQZbmkr2QN4-GiYd2k1WV0jfOVecQ8g1hZoCbT5taotDrhkwqIHXAPyEnDMBciEUg3fHM2Vn5CrnDQBQ0ZZLdkrOOONMAufn5Oe3ZO7Dg9lWN8NsvTMT5mp6wurB2BTHOKCdB5OqVQwB7eR3fnqu1ia4bM0Wq9gXcBzN4E2oipUPl-R9b4aMV6_zgjze3vxafV-sf9zdr76uF1ZIOS1cyxrOOtF2pumhzKVDKahdqkYgQ6eEU8uu74WyolWsl5KZppGUdlJ1PTh-Qb4cfLdzN6KzGKZkBr1NfjTpWUfj9f8vwT_p33GnVcuXSkEx-PhqkOKfGfOkR59LpoMJGOesGW9FC41sREHZAS2R5JywP66hoPdt6I3et6H3bWjgurRRRB_-_eBR8jf7Anw-AEWJO49JZ-sxWHQ-lai1i_4t_xfRxJwD</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Pourhaghighi, Reza</creator><creator>Ash, Peter E.A.</creator><creator>Phanse, Sadhna</creator><creator>Goebels, Florian</creator><creator>Hu, Lucas Z.M.</creator><creator>Chen, Siwei</creator><creator>Zhang, Yingying</creator><creator>Wierbowski, Shayne D.</creator><creator>Boudeau, Samantha</creator><creator>Moutaoufik, Mohamed T.</creator><creator>Malty, Ramy H.</creator><creator>Malolepsza, Edyta</creator><creator>Tsafou, Kalliopi</creator><creator>Nathan, Aparna</creator><creator>Cromar, Graham</creator><creator>Guo, Hongbo</creator><creator>Abdullatif, Ali Al</creator><creator>Apicco, Daniel J.</creator><creator>Becker, Lindsay A.</creator><creator>Gitler, Aaron D.</creator><creator>Pulst, Stefan M.</creator><creator>Youssef, Ahmed</creator><creator>Hekman, Ryan</creator><creator>Havugimana, Pierre C.</creator><creator>White, Carl A.</creator><creator>Blum, Benjamin C.</creator><creator>Ratti, Antonia</creator><creator>Bryant, Camron D.</creator><creator>Parkinson, John</creator><creator>Lage, Kasper</creator><creator>Babu, Mohan</creator><creator>Yu, Haiyuan</creator><creator>Bader, Gary D.</creator><creator>Wolozin, Benjamin</creator><creator>Emili, Andrew</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200422</creationdate><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><author>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain Mapping - methods</topic><topic>BraInMap</topic><topic>cofractionation/mass spectometry</topic><topic>complexosome</topic><topic>Connectome - methods</topic><topic>DNA-Binding Proteins - genetics</topic><topic>interaction network</topic><topic>Machine Learning</topic><topic>Mammals - physiology</topic><topic>Mass Spectrometry - methods</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>neurodegeneration</topic><topic>protein-protein interaction</topic><topic>TDP-43</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourhaghighi, Reza</creatorcontrib><creatorcontrib>Ash, Peter E.A.</creatorcontrib><creatorcontrib>Phanse, Sadhna</creatorcontrib><creatorcontrib>Goebels, Florian</creatorcontrib><creatorcontrib>Hu, Lucas Z.M.</creatorcontrib><creatorcontrib>Chen, Siwei</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Wierbowski, Shayne D.</creatorcontrib><creatorcontrib>Boudeau, Samantha</creatorcontrib><creatorcontrib>Moutaoufik, Mohamed T.</creatorcontrib><creatorcontrib>Malty, Ramy H.</creatorcontrib><creatorcontrib>Malolepsza, Edyta</creatorcontrib><creatorcontrib>Tsafou, Kalliopi</creatorcontrib><creatorcontrib>Nathan, Aparna</creatorcontrib><creatorcontrib>Cromar, Graham</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Abdullatif, Ali Al</creatorcontrib><creatorcontrib>Apicco, Daniel J.</creatorcontrib><creatorcontrib>Becker, Lindsay A.</creatorcontrib><creatorcontrib>Gitler, Aaron D.</creatorcontrib><creatorcontrib>Pulst, Stefan M.</creatorcontrib><creatorcontrib>Youssef, Ahmed</creatorcontrib><creatorcontrib>Hekman, Ryan</creatorcontrib><creatorcontrib>Havugimana, Pierre C.</creatorcontrib><creatorcontrib>White, Carl A.</creatorcontrib><creatorcontrib>Blum, Benjamin C.</creatorcontrib><creatorcontrib>Ratti, Antonia</creatorcontrib><creatorcontrib>Bryant, Camron D.</creatorcontrib><creatorcontrib>Parkinson, John</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><creatorcontrib>Babu, Mohan</creatorcontrib><creatorcontrib>Yu, Haiyuan</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Wolozin, Benjamin</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourhaghighi, Reza</au><au>Ash, Peter E.A.</au><au>Phanse, Sadhna</au><au>Goebels, Florian</au><au>Hu, Lucas Z.M.</au><au>Chen, Siwei</au><au>Zhang, Yingying</au><au>Wierbowski, Shayne D.</au><au>Boudeau, Samantha</au><au>Moutaoufik, Mohamed T.</au><au>Malty, Ramy H.</au><au>Malolepsza, Edyta</au><au>Tsafou, Kalliopi</au><au>Nathan, Aparna</au><au>Cromar, Graham</au><au>Guo, Hongbo</au><au>Abdullatif, Ali Al</au><au>Apicco, Daniel J.</au><au>Becker, Lindsay A.</au><au>Gitler, Aaron D.</au><au>Pulst, Stefan M.</au><au>Youssef, Ahmed</au><au>Hekman, Ryan</au><au>Havugimana, Pierre C.</au><au>White, Carl A.</au><au>Blum, Benjamin C.</au><au>Ratti, Antonia</au><au>Bryant, Camron D.</au><au>Parkinson, John</au><au>Lage, Kasper</au><au>Babu, Mohan</au><au>Yu, Haiyuan</au><au>Bader, Gary D.</au><au>Wolozin, Benjamin</au><au>Emili, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2020-04-22</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>333</spage><epage>350.e14</epage><pages>333-350.e14</pages><issn>2405-4712</issn><issn>2405-4720</issn><eissn>2405-4720</eissn><abstract>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/. [Display omitted] •BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32325033</pmid><doi>10.1016/j.cels.2020.03.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-4712
ispartof Cell systems, 2020-04, Vol.10 (4), p.333-350.e14
issn 2405-4712
2405-4720
2405-4720
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938770
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ALS
Amyotrophic Lateral Sclerosis - metabolism
Animals
Brain - metabolism
Brain Mapping - methods
BraInMap
cofractionation/mass spectometry
complexosome
Connectome - methods
DNA-Binding Proteins - genetics
interaction network
Machine Learning
Mammals - physiology
Mass Spectrometry - methods
Mice
Mutation - genetics
neurodegeneration
protein-protein interaction
TDP-43
title BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BraInMap%20Elucidates%20the%20Macromolecular%20Connectivity%20Landscape%20of%20Mammalian%20Brain&rft.jtitle=Cell%20systems&rft.au=Pourhaghighi,%20Reza&rft.date=2020-04-22&rft.volume=10&rft.issue=4&rft.spage=333&rft.epage=350.e14&rft.pages=333-350.e14&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2020.03.003&rft_dat=%3Cproquest_pubme%3E2394906564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394906564&rft_id=info:pmid/32325033&rft_els_id=S2405471220301095&rfr_iscdi=true