BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain
Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to...
Gespeichert in:
Veröffentlicht in: | Cell systems 2020-04, Vol.10 (4), p.333-350.e14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350.e14 |
---|---|
container_issue | 4 |
container_start_page | 333 |
container_title | Cell systems |
container_volume | 10 |
creator | Pourhaghighi, Reza Ash, Peter E.A. Phanse, Sadhna Goebels, Florian Hu, Lucas Z.M. Chen, Siwei Zhang, Yingying Wierbowski, Shayne D. Boudeau, Samantha Moutaoufik, Mohamed T. Malty, Ramy H. Malolepsza, Edyta Tsafou, Kalliopi Nathan, Aparna Cromar, Graham Guo, Hongbo Abdullatif, Ali Al Apicco, Daniel J. Becker, Lindsay A. Gitler, Aaron D. Pulst, Stefan M. Youssef, Ahmed Hekman, Ryan Havugimana, Pierre C. White, Carl A. Blum, Benjamin C. Ratti, Antonia Bryant, Camron D. Parkinson, John Lage, Kasper Babu, Mohan Yu, Haiyuan Bader, Gary D. Wolozin, Benjamin Emili, Andrew |
description | Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
[Display omitted]
•BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases
In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease. |
doi_str_mv | 10.1016/j.cels.2020.03.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471220301095</els_id><sourcerecordid>2394906564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVoSUKSF8iieNnNuFd_1hhKoR2SNDChXTRrIUvXjQZbmkr2QN4-GiYd2k1WV0jfOVecQ8g1hZoCbT5taotDrhkwqIHXAPyEnDMBciEUg3fHM2Vn5CrnDQBQ0ZZLdkrOOONMAufn5Oe3ZO7Dg9lWN8NsvTMT5mp6wurB2BTHOKCdB5OqVQwB7eR3fnqu1ia4bM0Wq9gXcBzN4E2oipUPl-R9b4aMV6_zgjze3vxafV-sf9zdr76uF1ZIOS1cyxrOOtF2pumhzKVDKahdqkYgQ6eEU8uu74WyolWsl5KZppGUdlJ1PTh-Qb4cfLdzN6KzGKZkBr1NfjTpWUfj9f8vwT_p33GnVcuXSkEx-PhqkOKfGfOkR59LpoMJGOesGW9FC41sREHZAS2R5JywP66hoPdt6I3et6H3bWjgurRRRB_-_eBR8jf7Anw-AEWJO49JZ-sxWHQ-lai1i_4t_xfRxJwD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394906564</pqid></control><display><type>article</type><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</creator><creatorcontrib>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</creatorcontrib><description>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
[Display omitted]
•BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases
In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</description><identifier>ISSN: 2405-4712</identifier><identifier>ISSN: 2405-4720</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2020.03.003</identifier><identifier>PMID: 32325033</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ALS ; Amyotrophic Lateral Sclerosis - metabolism ; Animals ; Brain - metabolism ; Brain Mapping - methods ; BraInMap ; cofractionation/mass spectometry ; complexosome ; Connectome - methods ; DNA-Binding Proteins - genetics ; interaction network ; Machine Learning ; Mammals - physiology ; Mass Spectrometry - methods ; Mice ; Mutation - genetics ; neurodegeneration ; protein-protein interaction ; TDP-43</subject><ispartof>Cell systems, 2020-04, Vol.10 (4), p.333-350.e14</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</citedby><cites>FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32325033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pourhaghighi, Reza</creatorcontrib><creatorcontrib>Ash, Peter E.A.</creatorcontrib><creatorcontrib>Phanse, Sadhna</creatorcontrib><creatorcontrib>Goebels, Florian</creatorcontrib><creatorcontrib>Hu, Lucas Z.M.</creatorcontrib><creatorcontrib>Chen, Siwei</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Wierbowski, Shayne D.</creatorcontrib><creatorcontrib>Boudeau, Samantha</creatorcontrib><creatorcontrib>Moutaoufik, Mohamed T.</creatorcontrib><creatorcontrib>Malty, Ramy H.</creatorcontrib><creatorcontrib>Malolepsza, Edyta</creatorcontrib><creatorcontrib>Tsafou, Kalliopi</creatorcontrib><creatorcontrib>Nathan, Aparna</creatorcontrib><creatorcontrib>Cromar, Graham</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Abdullatif, Ali Al</creatorcontrib><creatorcontrib>Apicco, Daniel J.</creatorcontrib><creatorcontrib>Becker, Lindsay A.</creatorcontrib><creatorcontrib>Gitler, Aaron D.</creatorcontrib><creatorcontrib>Pulst, Stefan M.</creatorcontrib><creatorcontrib>Youssef, Ahmed</creatorcontrib><creatorcontrib>Hekman, Ryan</creatorcontrib><creatorcontrib>Havugimana, Pierre C.</creatorcontrib><creatorcontrib>White, Carl A.</creatorcontrib><creatorcontrib>Blum, Benjamin C.</creatorcontrib><creatorcontrib>Ratti, Antonia</creatorcontrib><creatorcontrib>Bryant, Camron D.</creatorcontrib><creatorcontrib>Parkinson, John</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><creatorcontrib>Babu, Mohan</creatorcontrib><creatorcontrib>Yu, Haiyuan</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Wolozin, Benjamin</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
[Display omitted]
•BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases
In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</description><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain Mapping - methods</subject><subject>BraInMap</subject><subject>cofractionation/mass spectometry</subject><subject>complexosome</subject><subject>Connectome - methods</subject><subject>DNA-Binding Proteins - genetics</subject><subject>interaction network</subject><subject>Machine Learning</subject><subject>Mammals - physiology</subject><subject>Mass Spectrometry - methods</subject><subject>Mice</subject><subject>Mutation - genetics</subject><subject>neurodegeneration</subject><subject>protein-protein interaction</subject><subject>TDP-43</subject><issn>2405-4712</issn><issn>2405-4720</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAUhUVoSUKSF8iieNnNuFd_1hhKoR2SNDChXTRrIUvXjQZbmkr2QN4-GiYd2k1WV0jfOVecQ8g1hZoCbT5taotDrhkwqIHXAPyEnDMBciEUg3fHM2Vn5CrnDQBQ0ZZLdkrOOONMAufn5Oe3ZO7Dg9lWN8NsvTMT5mp6wurB2BTHOKCdB5OqVQwB7eR3fnqu1ia4bM0Wq9gXcBzN4E2oipUPl-R9b4aMV6_zgjze3vxafV-sf9zdr76uF1ZIOS1cyxrOOtF2pumhzKVDKahdqkYgQ6eEU8uu74WyolWsl5KZppGUdlJ1PTh-Qb4cfLdzN6KzGKZkBr1NfjTpWUfj9f8vwT_p33GnVcuXSkEx-PhqkOKfGfOkR59LpoMJGOesGW9FC41sREHZAS2R5JywP66hoPdt6I3et6H3bWjgurRRRB_-_eBR8jf7Anw-AEWJO49JZ-sxWHQ-lai1i_4t_xfRxJwD</recordid><startdate>20200422</startdate><enddate>20200422</enddate><creator>Pourhaghighi, Reza</creator><creator>Ash, Peter E.A.</creator><creator>Phanse, Sadhna</creator><creator>Goebels, Florian</creator><creator>Hu, Lucas Z.M.</creator><creator>Chen, Siwei</creator><creator>Zhang, Yingying</creator><creator>Wierbowski, Shayne D.</creator><creator>Boudeau, Samantha</creator><creator>Moutaoufik, Mohamed T.</creator><creator>Malty, Ramy H.</creator><creator>Malolepsza, Edyta</creator><creator>Tsafou, Kalliopi</creator><creator>Nathan, Aparna</creator><creator>Cromar, Graham</creator><creator>Guo, Hongbo</creator><creator>Abdullatif, Ali Al</creator><creator>Apicco, Daniel J.</creator><creator>Becker, Lindsay A.</creator><creator>Gitler, Aaron D.</creator><creator>Pulst, Stefan M.</creator><creator>Youssef, Ahmed</creator><creator>Hekman, Ryan</creator><creator>Havugimana, Pierre C.</creator><creator>White, Carl A.</creator><creator>Blum, Benjamin C.</creator><creator>Ratti, Antonia</creator><creator>Bryant, Camron D.</creator><creator>Parkinson, John</creator><creator>Lage, Kasper</creator><creator>Babu, Mohan</creator><creator>Yu, Haiyuan</creator><creator>Bader, Gary D.</creator><creator>Wolozin, Benjamin</creator><creator>Emili, Andrew</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200422</creationdate><title>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</title><author>Pourhaghighi, Reza ; Ash, Peter E.A. ; Phanse, Sadhna ; Goebels, Florian ; Hu, Lucas Z.M. ; Chen, Siwei ; Zhang, Yingying ; Wierbowski, Shayne D. ; Boudeau, Samantha ; Moutaoufik, Mohamed T. ; Malty, Ramy H. ; Malolepsza, Edyta ; Tsafou, Kalliopi ; Nathan, Aparna ; Cromar, Graham ; Guo, Hongbo ; Abdullatif, Ali Al ; Apicco, Daniel J. ; Becker, Lindsay A. ; Gitler, Aaron D. ; Pulst, Stefan M. ; Youssef, Ahmed ; Hekman, Ryan ; Havugimana, Pierre C. ; White, Carl A. ; Blum, Benjamin C. ; Ratti, Antonia ; Bryant, Camron D. ; Parkinson, John ; Lage, Kasper ; Babu, Mohan ; Yu, Haiyuan ; Bader, Gary D. ; Wolozin, Benjamin ; Emili, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d92632b49ba6f0b498de541c8764e2ed74d78bff47c4972f552a66511b57bf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain Mapping - methods</topic><topic>BraInMap</topic><topic>cofractionation/mass spectometry</topic><topic>complexosome</topic><topic>Connectome - methods</topic><topic>DNA-Binding Proteins - genetics</topic><topic>interaction network</topic><topic>Machine Learning</topic><topic>Mammals - physiology</topic><topic>Mass Spectrometry - methods</topic><topic>Mice</topic><topic>Mutation - genetics</topic><topic>neurodegeneration</topic><topic>protein-protein interaction</topic><topic>TDP-43</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pourhaghighi, Reza</creatorcontrib><creatorcontrib>Ash, Peter E.A.</creatorcontrib><creatorcontrib>Phanse, Sadhna</creatorcontrib><creatorcontrib>Goebels, Florian</creatorcontrib><creatorcontrib>Hu, Lucas Z.M.</creatorcontrib><creatorcontrib>Chen, Siwei</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Wierbowski, Shayne D.</creatorcontrib><creatorcontrib>Boudeau, Samantha</creatorcontrib><creatorcontrib>Moutaoufik, Mohamed T.</creatorcontrib><creatorcontrib>Malty, Ramy H.</creatorcontrib><creatorcontrib>Malolepsza, Edyta</creatorcontrib><creatorcontrib>Tsafou, Kalliopi</creatorcontrib><creatorcontrib>Nathan, Aparna</creatorcontrib><creatorcontrib>Cromar, Graham</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Abdullatif, Ali Al</creatorcontrib><creatorcontrib>Apicco, Daniel J.</creatorcontrib><creatorcontrib>Becker, Lindsay A.</creatorcontrib><creatorcontrib>Gitler, Aaron D.</creatorcontrib><creatorcontrib>Pulst, Stefan M.</creatorcontrib><creatorcontrib>Youssef, Ahmed</creatorcontrib><creatorcontrib>Hekman, Ryan</creatorcontrib><creatorcontrib>Havugimana, Pierre C.</creatorcontrib><creatorcontrib>White, Carl A.</creatorcontrib><creatorcontrib>Blum, Benjamin C.</creatorcontrib><creatorcontrib>Ratti, Antonia</creatorcontrib><creatorcontrib>Bryant, Camron D.</creatorcontrib><creatorcontrib>Parkinson, John</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><creatorcontrib>Babu, Mohan</creatorcontrib><creatorcontrib>Yu, Haiyuan</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Wolozin, Benjamin</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pourhaghighi, Reza</au><au>Ash, Peter E.A.</au><au>Phanse, Sadhna</au><au>Goebels, Florian</au><au>Hu, Lucas Z.M.</au><au>Chen, Siwei</au><au>Zhang, Yingying</au><au>Wierbowski, Shayne D.</au><au>Boudeau, Samantha</au><au>Moutaoufik, Mohamed T.</au><au>Malty, Ramy H.</au><au>Malolepsza, Edyta</au><au>Tsafou, Kalliopi</au><au>Nathan, Aparna</au><au>Cromar, Graham</au><au>Guo, Hongbo</au><au>Abdullatif, Ali Al</au><au>Apicco, Daniel J.</au><au>Becker, Lindsay A.</au><au>Gitler, Aaron D.</au><au>Pulst, Stefan M.</au><au>Youssef, Ahmed</au><au>Hekman, Ryan</au><au>Havugimana, Pierre C.</au><au>White, Carl A.</au><au>Blum, Benjamin C.</au><au>Ratti, Antonia</au><au>Bryant, Camron D.</au><au>Parkinson, John</au><au>Lage, Kasper</au><au>Babu, Mohan</au><au>Yu, Haiyuan</au><au>Bader, Gary D.</au><au>Wolozin, Benjamin</au><au>Emili, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2020-04-22</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>333</spage><epage>350.e14</epage><pages>333-350.e14</pages><issn>2405-4712</issn><issn>2405-4720</issn><eissn>2405-4720</eissn><abstract>Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global “interactome” comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
[Display omitted]
•BraInMap is a global proteomic survey of over 1,000 multi-protein brain complexes•Near-native complex identification by CF-MS and reconstruction by computer learning•Technique interrogates complexes in normal and pathophysiological context•Allows study of functional modules that are adversely affected in neurological diseases
In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand multi-protein complex interactions in the mouse brain using a platform they have named BraInMap (for brain interaction map). This approach uses computer learning to reconstruct protein interactions from brain tissues that have been extensively purified. This important resource will allow neuroscientists to explore important neurobiological questions and identify pathways that are adversely affected in disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32325033</pmid><doi>10.1016/j.cels.2020.03.003</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-4712 |
ispartof | Cell systems, 2020-04, Vol.10 (4), p.333-350.e14 |
issn | 2405-4712 2405-4720 2405-4720 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938770 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ALS Amyotrophic Lateral Sclerosis - metabolism Animals Brain - metabolism Brain Mapping - methods BraInMap cofractionation/mass spectometry complexosome Connectome - methods DNA-Binding Proteins - genetics interaction network Machine Learning Mammals - physiology Mass Spectrometry - methods Mice Mutation - genetics neurodegeneration protein-protein interaction TDP-43 |
title | BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BraInMap%20Elucidates%20the%20Macromolecular%20Connectivity%20Landscape%20of%20Mammalian%20Brain&rft.jtitle=Cell%20systems&rft.au=Pourhaghighi,%20Reza&rft.date=2020-04-22&rft.volume=10&rft.issue=4&rft.spage=333&rft.epage=350.e14&rft.pages=333-350.e14&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2020.03.003&rft_dat=%3Cproquest_pubme%3E2394906564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394906564&rft_id=info:pmid/32325033&rft_els_id=S2405471220301095&rfr_iscdi=true |