Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy
Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-02, Vol.33 (8), p.e2006829-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e2006829 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Erstling, Jacob A. Hinckley, Joshua A. Bag, Nirmalya Hersh, Jessica Feuer, Grant B. Lee, Rachel Malarkey, Henry F. Yu, Fei Ma, Kai Baird, Barbara A. Wiesner, Ulrich B. |
description | Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall ( |
doi_str_mv | 10.1002/adma.202006829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491836287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EokvLlSOyxIVDs9iO7cQXpGVpAWnbIkrPluM4XVdOnNpJq73xCJV4Q54ER1u2lAsn__J8Hnn-AeAVRnOMEHmn6lbNCSII8ZKIJ2CGGcEZRYI9BTMkcpYJTss98CLGK4SQ4Ig_B3t5TgtECzwDdxduCCq2yrlD-CHYy_VwCFVXw69rP_g4qMoZeOxGH0zUphvgMk2_fvw8Xxvn4MKNre18tM5qNRh4qjrfqzBY7UyEjQ9wZW8Sfrec6LM-CcrB87E3IV1-M9G7cbC-gydWBx-17zcH4FmjXDQv7899cHF89H35OVudffqyXKwyTXkpskohXhvEGsSqpkYFrgtaEZ3TJGDFleYGa2KYEKRRWLM6J7kmNA1CM0ZQvg_eb337sWpNPWULysk-2FaFjfTKysdKZ9fy0t_IQuScM5oM3t4bBH89mjjI1qYVOac648coCS0ETc0wntA3_6BXfgxdipcogcuck7JI1HxLTauIwTS7z2Akp7LlVLbclZ0evP47wg7_024CxBa4tc5s_mMnFx9PFg_mvwHKxr0H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491836287</pqid></control><display><type>article</type><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</creator><creatorcontrib>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</creatorcontrib><description>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (<10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging.
Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202006829</identifier><identifier>PMID: 33470471</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum ; Aluminum silicates ; Aluminum Silicates - chemistry ; amorphous silica nanoparticles ; Antibodies ; Blinking ; Bright plating ; Buffers ; Cellular structure ; Chemical compounds ; Dyes ; Fluorescence ; Fluorescent Dyes - chemistry ; Humans ; Imaging ; imaging fluorescence correlation spectroscopy ; live‐cell imaging ; Materials science ; Microscopy ; Microscopy, Fluorescence ; Nanoparticles ; Nanoparticles - chemistry ; optical super‐resolution microscopy ; vesicle trafficking</subject><ispartof>Advanced materials (Weinheim), 2021-02, Vol.33 (8), p.e2006829-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</citedby><cites>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</cites><orcidid>0000-0002-0575-5045 ; 0000-0003-0151-7899 ; 0000-0003-0875-4248 ; 0000-0001-6934-3755 ; 0000-0001-8713-0980 ; 0000-0002-8191-8096 ; 0000-0001-6752-9142 ; 0000-0001-5033-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202006829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202006829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33470471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erstling, Jacob A.</creatorcontrib><creatorcontrib>Hinckley, Joshua A.</creatorcontrib><creatorcontrib>Bag, Nirmalya</creatorcontrib><creatorcontrib>Hersh, Jessica</creatorcontrib><creatorcontrib>Feuer, Grant B.</creatorcontrib><creatorcontrib>Lee, Rachel</creatorcontrib><creatorcontrib>Malarkey, Henry F.</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Baird, Barbara A.</creatorcontrib><creatorcontrib>Wiesner, Ulrich B.</creatorcontrib><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (<10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging.
Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</description><subject>Aluminosilicates</subject><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Aluminum Silicates - chemistry</subject><subject>amorphous silica nanoparticles</subject><subject>Antibodies</subject><subject>Blinking</subject><subject>Bright plating</subject><subject>Buffers</subject><subject>Cellular structure</subject><subject>Chemical compounds</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Imaging</subject><subject>imaging fluorescence correlation spectroscopy</subject><subject>live‐cell imaging</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>optical super‐resolution microscopy</subject><subject>vesicle trafficking</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EokvLlSOyxIVDs9iO7cQXpGVpAWnbIkrPluM4XVdOnNpJq73xCJV4Q54ER1u2lAsn__J8Hnn-AeAVRnOMEHmn6lbNCSII8ZKIJ2CGGcEZRYI9BTMkcpYJTss98CLGK4SQ4Ig_B3t5TgtECzwDdxduCCq2yrlD-CHYy_VwCFVXw69rP_g4qMoZeOxGH0zUphvgMk2_fvw8Xxvn4MKNre18tM5qNRh4qjrfqzBY7UyEjQ9wZW8Sfrec6LM-CcrB87E3IV1-M9G7cbC-gydWBx-17zcH4FmjXDQv7899cHF89H35OVudffqyXKwyTXkpskohXhvEGsSqpkYFrgtaEZ3TJGDFleYGa2KYEKRRWLM6J7kmNA1CM0ZQvg_eb337sWpNPWULysk-2FaFjfTKysdKZ9fy0t_IQuScM5oM3t4bBH89mjjI1qYVOac648coCS0ETc0wntA3_6BXfgxdipcogcuck7JI1HxLTauIwTS7z2Akp7LlVLbclZ0evP47wg7_024CxBa4tc5s_mMnFx9PFg_mvwHKxr0H</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Erstling, Jacob A.</creator><creator>Hinckley, Joshua A.</creator><creator>Bag, Nirmalya</creator><creator>Hersh, Jessica</creator><creator>Feuer, Grant B.</creator><creator>Lee, Rachel</creator><creator>Malarkey, Henry F.</creator><creator>Yu, Fei</creator><creator>Ma, Kai</creator><creator>Baird, Barbara A.</creator><creator>Wiesner, Ulrich B.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0575-5045</orcidid><orcidid>https://orcid.org/0000-0003-0151-7899</orcidid><orcidid>https://orcid.org/0000-0003-0875-4248</orcidid><orcidid>https://orcid.org/0000-0001-6934-3755</orcidid><orcidid>https://orcid.org/0000-0001-8713-0980</orcidid><orcidid>https://orcid.org/0000-0002-8191-8096</orcidid><orcidid>https://orcid.org/0000-0001-6752-9142</orcidid><orcidid>https://orcid.org/0000-0001-5033-4664</orcidid></search><sort><creationdate>20210201</creationdate><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><author>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminosilicates</topic><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Aluminum Silicates - chemistry</topic><topic>amorphous silica nanoparticles</topic><topic>Antibodies</topic><topic>Blinking</topic><topic>Bright plating</topic><topic>Buffers</topic><topic>Cellular structure</topic><topic>Chemical compounds</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Imaging</topic><topic>imaging fluorescence correlation spectroscopy</topic><topic>live‐cell imaging</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>optical super‐resolution microscopy</topic><topic>vesicle trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erstling, Jacob A.</creatorcontrib><creatorcontrib>Hinckley, Joshua A.</creatorcontrib><creatorcontrib>Bag, Nirmalya</creatorcontrib><creatorcontrib>Hersh, Jessica</creatorcontrib><creatorcontrib>Feuer, Grant B.</creatorcontrib><creatorcontrib>Lee, Rachel</creatorcontrib><creatorcontrib>Malarkey, Henry F.</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Baird, Barbara A.</creatorcontrib><creatorcontrib>Wiesner, Ulrich B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erstling, Jacob A.</au><au>Hinckley, Joshua A.</au><au>Bag, Nirmalya</au><au>Hersh, Jessica</au><au>Feuer, Grant B.</au><au>Lee, Rachel</au><au>Malarkey, Henry F.</au><au>Yu, Fei</au><au>Ma, Kai</au><au>Baird, Barbara A.</au><au>Wiesner, Ulrich B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><spage>e2006829</spage><epage>n/a</epage><pages>e2006829-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (<10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging.
Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33470471</pmid><doi>10.1002/adma.202006829</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0575-5045</orcidid><orcidid>https://orcid.org/0000-0003-0151-7899</orcidid><orcidid>https://orcid.org/0000-0003-0875-4248</orcidid><orcidid>https://orcid.org/0000-0001-6934-3755</orcidid><orcidid>https://orcid.org/0000-0001-8713-0980</orcidid><orcidid>https://orcid.org/0000-0002-8191-8096</orcidid><orcidid>https://orcid.org/0000-0001-6752-9142</orcidid><orcidid>https://orcid.org/0000-0001-5033-4664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-02, Vol.33 (8), p.e2006829-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936654 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aluminosilicates Aluminum Aluminum silicates Aluminum Silicates - chemistry amorphous silica nanoparticles Antibodies Blinking Bright plating Buffers Cellular structure Chemical compounds Dyes Fluorescence Fluorescent Dyes - chemistry Humans Imaging imaging fluorescence correlation spectroscopy live‐cell imaging Materials science Microscopy Microscopy, Fluorescence Nanoparticles Nanoparticles - chemistry optical super‐resolution microscopy vesicle trafficking |
title | Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasmall,%20Bright,%20and%20Photostable%20Fluorescent%20Core%E2%80%93Shell%20Aluminosilicate%20Nanoparticles%20for%20Live%E2%80%90Cell%20Optical%20Super%E2%80%90Resolution%20Microscopy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Erstling,%20Jacob%20A.&rft.date=2021-02-01&rft.volume=33&rft.issue=8&rft.spage=e2006829&rft.epage=n/a&rft.pages=e2006829-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202006829&rft_dat=%3Cproquest_pubme%3E2491836287%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491836287&rft_id=info:pmid/33470471&rfr_iscdi=true |