Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy

Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-02, Vol.33 (8), p.e2006829-n/a
Hauptverfasser: Erstling, Jacob A., Hinckley, Joshua A., Bag, Nirmalya, Hersh, Jessica, Feuer, Grant B., Lee, Rachel, Malarkey, Henry F., Yu, Fei, Ma, Kai, Baird, Barbara A., Wiesner, Ulrich B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2006829
container_title Advanced materials (Weinheim)
container_volume 33
creator Erstling, Jacob A.
Hinckley, Joshua A.
Bag, Nirmalya
Hersh, Jessica
Feuer, Grant B.
Lee, Rachel
Malarkey, Henry F.
Yu, Fei
Ma, Kai
Baird, Barbara A.
Wiesner, Ulrich B.
description Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (
doi_str_mv 10.1002/adma.202006829
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491836287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</originalsourceid><addsrcrecordid>eNqFkcFu1DAYhC0EokvLlSOyxIVDs9iO7cQXpGVpAWnbIkrPluM4XVdOnNpJq73xCJV4Q54ER1u2lAsn__J8Hnn-AeAVRnOMEHmn6lbNCSII8ZKIJ2CGGcEZRYI9BTMkcpYJTss98CLGK4SQ4Ig_B3t5TgtECzwDdxduCCq2yrlD-CHYy_VwCFVXw69rP_g4qMoZeOxGH0zUphvgMk2_fvw8Xxvn4MKNre18tM5qNRh4qjrfqzBY7UyEjQ9wZW8Sfrec6LM-CcrB87E3IV1-M9G7cbC-gydWBx-17zcH4FmjXDQv7899cHF89H35OVudffqyXKwyTXkpskohXhvEGsSqpkYFrgtaEZ3TJGDFleYGa2KYEKRRWLM6J7kmNA1CM0ZQvg_eb337sWpNPWULysk-2FaFjfTKysdKZ9fy0t_IQuScM5oM3t4bBH89mjjI1qYVOac648coCS0ETc0wntA3_6BXfgxdipcogcuck7JI1HxLTauIwTS7z2Akp7LlVLbclZ0evP47wg7_024CxBa4tc5s_mMnFx9PFg_mvwHKxr0H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491836287</pqid></control><display><type>article</type><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</creator><creatorcontrib>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</creatorcontrib><description>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (&lt;10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging. Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202006829</identifier><identifier>PMID: 33470471</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum ; Aluminum silicates ; Aluminum Silicates - chemistry ; amorphous silica nanoparticles ; Antibodies ; Blinking ; Bright plating ; Buffers ; Cellular structure ; Chemical compounds ; Dyes ; Fluorescence ; Fluorescent Dyes - chemistry ; Humans ; Imaging ; imaging fluorescence correlation spectroscopy ; live‐cell imaging ; Materials science ; Microscopy ; Microscopy, Fluorescence ; Nanoparticles ; Nanoparticles - chemistry ; optical super‐resolution microscopy ; vesicle trafficking</subject><ispartof>Advanced materials (Weinheim), 2021-02, Vol.33 (8), p.e2006829-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</citedby><cites>FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</cites><orcidid>0000-0002-0575-5045 ; 0000-0003-0151-7899 ; 0000-0003-0875-4248 ; 0000-0001-6934-3755 ; 0000-0001-8713-0980 ; 0000-0002-8191-8096 ; 0000-0001-6752-9142 ; 0000-0001-5033-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202006829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202006829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33470471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erstling, Jacob A.</creatorcontrib><creatorcontrib>Hinckley, Joshua A.</creatorcontrib><creatorcontrib>Bag, Nirmalya</creatorcontrib><creatorcontrib>Hersh, Jessica</creatorcontrib><creatorcontrib>Feuer, Grant B.</creatorcontrib><creatorcontrib>Lee, Rachel</creatorcontrib><creatorcontrib>Malarkey, Henry F.</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Baird, Barbara A.</creatorcontrib><creatorcontrib>Wiesner, Ulrich B.</creatorcontrib><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (&lt;10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging. Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</description><subject>Aluminosilicates</subject><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Aluminum Silicates - chemistry</subject><subject>amorphous silica nanoparticles</subject><subject>Antibodies</subject><subject>Blinking</subject><subject>Bright plating</subject><subject>Buffers</subject><subject>Cellular structure</subject><subject>Chemical compounds</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Imaging</subject><subject>imaging fluorescence correlation spectroscopy</subject><subject>live‐cell imaging</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>optical super‐resolution microscopy</subject><subject>vesicle trafficking</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAYhC0EokvLlSOyxIVDs9iO7cQXpGVpAWnbIkrPluM4XVdOnNpJq73xCJV4Q54ER1u2lAsn__J8Hnn-AeAVRnOMEHmn6lbNCSII8ZKIJ2CGGcEZRYI9BTMkcpYJTss98CLGK4SQ4Ig_B3t5TgtECzwDdxduCCq2yrlD-CHYy_VwCFVXw69rP_g4qMoZeOxGH0zUphvgMk2_fvw8Xxvn4MKNre18tM5qNRh4qjrfqzBY7UyEjQ9wZW8Sfrec6LM-CcrB87E3IV1-M9G7cbC-gydWBx-17zcH4FmjXDQv7899cHF89H35OVudffqyXKwyTXkpskohXhvEGsSqpkYFrgtaEZ3TJGDFleYGa2KYEKRRWLM6J7kmNA1CM0ZQvg_eb337sWpNPWULysk-2FaFjfTKysdKZ9fy0t_IQuScM5oM3t4bBH89mjjI1qYVOac648coCS0ETc0wntA3_6BXfgxdipcogcuck7JI1HxLTauIwTS7z2Akp7LlVLbclZ0evP47wg7_024CxBa4tc5s_mMnFx9PFg_mvwHKxr0H</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Erstling, Jacob A.</creator><creator>Hinckley, Joshua A.</creator><creator>Bag, Nirmalya</creator><creator>Hersh, Jessica</creator><creator>Feuer, Grant B.</creator><creator>Lee, Rachel</creator><creator>Malarkey, Henry F.</creator><creator>Yu, Fei</creator><creator>Ma, Kai</creator><creator>Baird, Barbara A.</creator><creator>Wiesner, Ulrich B.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0575-5045</orcidid><orcidid>https://orcid.org/0000-0003-0151-7899</orcidid><orcidid>https://orcid.org/0000-0003-0875-4248</orcidid><orcidid>https://orcid.org/0000-0001-6934-3755</orcidid><orcidid>https://orcid.org/0000-0001-8713-0980</orcidid><orcidid>https://orcid.org/0000-0002-8191-8096</orcidid><orcidid>https://orcid.org/0000-0001-6752-9142</orcidid><orcidid>https://orcid.org/0000-0001-5033-4664</orcidid></search><sort><creationdate>20210201</creationdate><title>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</title><author>Erstling, Jacob A. ; Hinckley, Joshua A. ; Bag, Nirmalya ; Hersh, Jessica ; Feuer, Grant B. ; Lee, Rachel ; Malarkey, Henry F. ; Yu, Fei ; Ma, Kai ; Baird, Barbara A. ; Wiesner, Ulrich B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4689-ba06de05f05bfd071d74b2c34ba01a6ac6e1c2e5992fa1c5d323c24c5d9c55203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminosilicates</topic><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Aluminum Silicates - chemistry</topic><topic>amorphous silica nanoparticles</topic><topic>Antibodies</topic><topic>Blinking</topic><topic>Bright plating</topic><topic>Buffers</topic><topic>Cellular structure</topic><topic>Chemical compounds</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Imaging</topic><topic>imaging fluorescence correlation spectroscopy</topic><topic>live‐cell imaging</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>optical super‐resolution microscopy</topic><topic>vesicle trafficking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erstling, Jacob A.</creatorcontrib><creatorcontrib>Hinckley, Joshua A.</creatorcontrib><creatorcontrib>Bag, Nirmalya</creatorcontrib><creatorcontrib>Hersh, Jessica</creatorcontrib><creatorcontrib>Feuer, Grant B.</creatorcontrib><creatorcontrib>Lee, Rachel</creatorcontrib><creatorcontrib>Malarkey, Henry F.</creatorcontrib><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Ma, Kai</creatorcontrib><creatorcontrib>Baird, Barbara A.</creatorcontrib><creatorcontrib>Wiesner, Ulrich B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erstling, Jacob A.</au><au>Hinckley, Joshua A.</au><au>Bag, Nirmalya</au><au>Hersh, Jessica</au><au>Feuer, Grant B.</au><au>Lee, Rachel</au><au>Malarkey, Henry F.</au><au>Yu, Fei</au><au>Ma, Kai</au><au>Baird, Barbara A.</au><au>Wiesner, Ulrich B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><spage>e2006829</spage><epage>n/a</epage><pages>e2006829-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Stochastic optical reconstruction microscopy (STORM) is an optical super‐resolution microscopy (SRM) technique that traditionally requires toxic and non‐physiological imaging buffers and setups that are not conducive to live‐cell studies. It is observed that ultrasmall (&lt;10 nm) fluorescent core–shell aluminosilicate nanoparticles (aC’ dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non‐toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC’ dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC’ dots enable live‐cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live‐cell imaging. Fourfold coordinated aluminum within ultrasmall aluminosilicate nanoparticles leads to redox‐type blinking of encapsulated organic fluorophores under live‐cell imaging conditions. Their blinking, brightness, and photostability characteristics make these excellent probes for optical super‐resolution microscopy. These nontoxic nanoparticles can be used to interrogate both fixed and live‐cell systems as well as to quantitatively study the processing of nanoparticles within live cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33470471</pmid><doi>10.1002/adma.202006829</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0575-5045</orcidid><orcidid>https://orcid.org/0000-0003-0151-7899</orcidid><orcidid>https://orcid.org/0000-0003-0875-4248</orcidid><orcidid>https://orcid.org/0000-0001-6934-3755</orcidid><orcidid>https://orcid.org/0000-0001-8713-0980</orcidid><orcidid>https://orcid.org/0000-0002-8191-8096</orcidid><orcidid>https://orcid.org/0000-0001-6752-9142</orcidid><orcidid>https://orcid.org/0000-0001-5033-4664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-02, Vol.33 (8), p.e2006829-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936654
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aluminosilicates
Aluminum
Aluminum silicates
Aluminum Silicates - chemistry
amorphous silica nanoparticles
Antibodies
Blinking
Bright plating
Buffers
Cellular structure
Chemical compounds
Dyes
Fluorescence
Fluorescent Dyes - chemistry
Humans
Imaging
imaging fluorescence correlation spectroscopy
live‐cell imaging
Materials science
Microscopy
Microscopy, Fluorescence
Nanoparticles
Nanoparticles - chemistry
optical super‐resolution microscopy
vesicle trafficking
title Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Live‐Cell Optical Super‐Resolution Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasmall,%20Bright,%20and%20Photostable%20Fluorescent%20Core%E2%80%93Shell%20Aluminosilicate%20Nanoparticles%20for%20Live%E2%80%90Cell%20Optical%20Super%E2%80%90Resolution%20Microscopy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Erstling,%20Jacob%20A.&rft.date=2021-02-01&rft.volume=33&rft.issue=8&rft.spage=e2006829&rft.epage=n/a&rft.pages=e2006829-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202006829&rft_dat=%3Cproquest_pubme%3E2491836287%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491836287&rft_id=info:pmid/33470471&rfr_iscdi=true