NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway
Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gas...
Gespeichert in:
Veröffentlicht in: | Oncogene 2021-03, Vol.40 (9), p.1578-1594 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1594 |
---|---|
container_issue | 9 |
container_start_page | 1578 |
container_title | Oncogene |
container_volume | 40 |
creator | Kang, Wei Zhang, Jinglin Huang, Tingting Zhou, Yuhang Wong, Chi Chun Chan, Ronald C. K. Dong, Yujuan Wu, Feng Zhang, Bin Wu, William K. K. Chan, Michael W. Y. Cheng, Alfred S. L. Yu, Jun Wong, Nathalie Lo, Kwok Wai To, Ka Fai |
description | Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential. |
doi_str_mv | 10.1038/s41388-020-01579-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7932926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655714023</galeid><sourcerecordid>A655714023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-d4ab656eecc315a4f6148543465390f24f6798a8ba9116b6741c3b2d842f81283</originalsourceid><addsrcrecordid>eNp9Uttu1DAUjBCILoUf4AFZ4rVpfY_9grSUS5FWFCF4thzHSV02dmo7hf0KfhkvKS2VEPKDj-bMjOZIU1XPETxGkIiTRBERooYY1hCxRtbkQbVCtOE1Y5I-rFZQMlhLTPBB9SSlSwhhIyF-XB0QQhmmTKyqnx_Pv5yekSOggYmzcXoLso6DzSD0YHSfaypRzaaT_SgaVsYjMMUwhmwTGHTK0RlgdDTOh8F6m1wC7Q7MU7TDvNXZ-QF8Otu8eY2B_VHAlFzwQPsOaJPd9UJYf8tg0vniu949rR71epvss5v_sPr67m1JWG_O3384XW9qw2GT647qljNurTEEMU17jqhglFDOiIQ9LkAjhRatlgjxljcUGdLiTlDcC4QFOaxeLb7T3I62M9bnqLdqim7UcaeCdur-xrsLNYRr1UiCJebF4OWNQQxXs01ZXYY5-pJZYSo55lgyccca9NYq5_tQzMzoklFrzliDKMSksI7_wSqvs6MzwdveFfyeAC8CE0NK0fa3wRFU-26opRuqdEP97obai178ffKt5E8ZCoEshFRWfrDx7qT_2P4C6rzCdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496262958</pqid></control><display><type>article</type><title>NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kang, Wei ; Zhang, Jinglin ; Huang, Tingting ; Zhou, Yuhang ; Wong, Chi Chun ; Chan, Ronald C. K. ; Dong, Yujuan ; Wu, Feng ; Zhang, Bin ; Wu, William K. K. ; Chan, Michael W. Y. ; Cheng, Alfred S. L. ; Yu, Jun ; Wong, Nathalie ; Lo, Kwok Wai ; To, Ka Fai</creator><creatorcontrib>Kang, Wei ; Zhang, Jinglin ; Huang, Tingting ; Zhou, Yuhang ; Wong, Chi Chun ; Chan, Ronald C. K. ; Dong, Yujuan ; Wu, Feng ; Zhang, Bin ; Wu, William K. K. ; Chan, Michael W. Y. ; Cheng, Alfred S. L. ; Yu, Jun ; Wong, Nathalie ; Lo, Kwok Wai ; To, Ka Fai</creatorcontrib><description>Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-020-01579-3</identifier><identifier>PMID: 33452458</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/31 ; 14/19 ; 38/77 ; 38/91 ; 45 ; 631/67/1504/1829 ; 631/67/1857 ; 64/60 ; 82/80 ; AKT protein ; Antitumor activity ; Apoptosis ; Apoptosis - genetics ; Carcinogenesis ; Carcinogenesis - genetics ; Care and treatment ; Carrier Proteins - genetics ; Cell Biology ; Cell cycle ; Cell growth ; Cell Line, Tumor ; Cell Movement - genetics ; Cell proliferation ; Cell Proliferation - genetics ; Cisplatin ; Cisplatin - pharmacology ; Datasets ; Development and progression ; Drug Resistance, Neoplasm - genetics ; Epigenetics ; Epstein-Barr virus ; Fluorouracil - pharmacology ; Gastric cancer ; Gene amplification ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genetic aspects ; Genetic regulation ; Health aspects ; Human Genetics ; Humans ; Infections ; Internal Medicine ; Medicine ; Medicine & Public Health ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Molecular modelling ; Mutation ; Notch protein ; Notch3 protein ; Oncogene Protein v-akt - genetics ; Oncology ; Pathogenesis ; Receptor, Notch3 - genetics ; RNA, Small Interfering - genetics ; siRNA ; Stomach cancer ; Stomach Neoplasms - genetics ; Stomach Neoplasms - pathology ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; Tumor suppressor genes ; Tumors</subject><ispartof>Oncogene, 2021-03, Vol.40 (9), p.1578-1594</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-d4ab656eecc315a4f6148543465390f24f6798a8ba9116b6741c3b2d842f81283</citedby><cites>FETCH-LOGICAL-c607t-d4ab656eecc315a4f6148543465390f24f6798a8ba9116b6741c3b2d842f81283</cites><orcidid>0000-0001-5008-2153 ; 0000-0002-3488-6124 ; 0000-0002-5662-5240 ; 0000-0003-1431-322X ; 0000-0003-4919-3707 ; 0000-0002-4651-677X ; 0000-0003-0457-0337 ; 0000-0003-1362-3541 ; 0000-0002-8254-8242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-020-01579-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-020-01579-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33452458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Zhou, Yuhang</creatorcontrib><creatorcontrib>Wong, Chi Chun</creatorcontrib><creatorcontrib>Chan, Ronald C. K.</creatorcontrib><creatorcontrib>Dong, Yujuan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wu, William K. K.</creatorcontrib><creatorcontrib>Chan, Michael W. Y.</creatorcontrib><creatorcontrib>Cheng, Alfred S. L.</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wong, Nathalie</creatorcontrib><creatorcontrib>Lo, Kwok Wai</creatorcontrib><creatorcontrib>To, Ka Fai</creatorcontrib><title>NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential.</description><subject>13/1</subject><subject>13/109</subject><subject>13/31</subject><subject>14/19</subject><subject>38/77</subject><subject>38/91</subject><subject>45</subject><subject>631/67/1504/1829</subject><subject>631/67/1857</subject><subject>64/60</subject><subject>82/80</subject><subject>AKT protein</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Carcinogenesis</subject><subject>Carcinogenesis - genetics</subject><subject>Care and treatment</subject><subject>Carrier Proteins - genetics</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - genetics</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Epigenetics</subject><subject>Epstein-Barr virus</subject><subject>Fluorouracil - pharmacology</subject><subject>Gastric cancer</subject><subject>Gene amplification</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Infections</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Notch protein</subject><subject>Notch3 protein</subject><subject>Oncogene Protein v-akt - genetics</subject><subject>Oncology</subject><subject>Pathogenesis</subject><subject>Receptor, Notch3 - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>siRNA</subject><subject>Stomach cancer</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - pathology</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>Tumor suppressor genes</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Uttu1DAUjBCILoUf4AFZ4rVpfY_9grSUS5FWFCF4thzHSV02dmo7hf0KfhkvKS2VEPKDj-bMjOZIU1XPETxGkIiTRBERooYY1hCxRtbkQbVCtOE1Y5I-rFZQMlhLTPBB9SSlSwhhIyF-XB0QQhmmTKyqnx_Pv5yekSOggYmzcXoLso6DzSD0YHSfaypRzaaT_SgaVsYjMMUwhmwTGHTK0RlgdDTOh8F6m1wC7Q7MU7TDvNXZ-QF8Otu8eY2B_VHAlFzwQPsOaJPd9UJYf8tg0vniu949rR71epvss5v_sPr67m1JWG_O3384XW9qw2GT647qljNurTEEMU17jqhglFDOiIQ9LkAjhRatlgjxljcUGdLiTlDcC4QFOaxeLb7T3I62M9bnqLdqim7UcaeCdur-xrsLNYRr1UiCJebF4OWNQQxXs01ZXYY5-pJZYSo55lgyccca9NYq5_tQzMzoklFrzliDKMSksI7_wSqvs6MzwdveFfyeAC8CE0NK0fa3wRFU-26opRuqdEP97obai178ffKt5E8ZCoEshFRWfrDx7qT_2P4C6rzCdQ</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Kang, Wei</creator><creator>Zhang, Jinglin</creator><creator>Huang, Tingting</creator><creator>Zhou, Yuhang</creator><creator>Wong, Chi Chun</creator><creator>Chan, Ronald C. K.</creator><creator>Dong, Yujuan</creator><creator>Wu, Feng</creator><creator>Zhang, Bin</creator><creator>Wu, William K. K.</creator><creator>Chan, Michael W. Y.</creator><creator>Cheng, Alfred S. L.</creator><creator>Yu, Jun</creator><creator>Wong, Nathalie</creator><creator>Lo, Kwok Wai</creator><creator>To, Ka Fai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid><orcidid>https://orcid.org/0000-0002-3488-6124</orcidid><orcidid>https://orcid.org/0000-0002-5662-5240</orcidid><orcidid>https://orcid.org/0000-0003-1431-322X</orcidid><orcidid>https://orcid.org/0000-0003-4919-3707</orcidid><orcidid>https://orcid.org/0000-0002-4651-677X</orcidid><orcidid>https://orcid.org/0000-0003-0457-0337</orcidid><orcidid>https://orcid.org/0000-0003-1362-3541</orcidid><orcidid>https://orcid.org/0000-0002-8254-8242</orcidid></search><sort><creationdate>20210304</creationdate><title>NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway</title><author>Kang, Wei ; Zhang, Jinglin ; Huang, Tingting ; Zhou, Yuhang ; Wong, Chi Chun ; Chan, Ronald C. K. ; Dong, Yujuan ; Wu, Feng ; Zhang, Bin ; Wu, William K. K. ; Chan, Michael W. Y. ; Cheng, Alfred S. L. ; Yu, Jun ; Wong, Nathalie ; Lo, Kwok Wai ; To, Ka Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-d4ab656eecc315a4f6148543465390f24f6798a8ba9116b6741c3b2d842f81283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/31</topic><topic>14/19</topic><topic>38/77</topic><topic>38/91</topic><topic>45</topic><topic>631/67/1504/1829</topic><topic>631/67/1857</topic><topic>64/60</topic><topic>82/80</topic><topic>AKT protein</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Carcinogenesis</topic><topic>Carcinogenesis - genetics</topic><topic>Care and treatment</topic><topic>Carrier Proteins - genetics</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - genetics</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Epigenetics</topic><topic>Epstein-Barr virus</topic><topic>Fluorouracil - pharmacology</topic><topic>Gastric cancer</topic><topic>Gene amplification</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Infections</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Notch protein</topic><topic>Notch3 protein</topic><topic>Oncogene Protein v-akt - genetics</topic><topic>Oncology</topic><topic>Pathogenesis</topic><topic>Receptor, Notch3 - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>siRNA</topic><topic>Stomach cancer</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - pathology</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>Tumor suppressor genes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>Zhang, Jinglin</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Zhou, Yuhang</creatorcontrib><creatorcontrib>Wong, Chi Chun</creatorcontrib><creatorcontrib>Chan, Ronald C. K.</creatorcontrib><creatorcontrib>Dong, Yujuan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wu, William K. K.</creatorcontrib><creatorcontrib>Chan, Michael W. Y.</creatorcontrib><creatorcontrib>Cheng, Alfred S. L.</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wong, Nathalie</creatorcontrib><creatorcontrib>Lo, Kwok Wai</creatorcontrib><creatorcontrib>To, Ka Fai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Wei</au><au>Zhang, Jinglin</au><au>Huang, Tingting</au><au>Zhou, Yuhang</au><au>Wong, Chi Chun</au><au>Chan, Ronald C. K.</au><au>Dong, Yujuan</au><au>Wu, Feng</au><au>Zhang, Bin</au><au>Wu, William K. K.</au><au>Chan, Michael W. Y.</au><au>Cheng, Alfred S. L.</au><au>Yu, Jun</au><au>Wong, Nathalie</au><au>Lo, Kwok Wai</au><au>To, Ka Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>40</volume><issue>9</issue><spage>1578</spage><epage>1594</epage><pages>1578-1594</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33452458</pmid><doi>10.1038/s41388-020-01579-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid><orcidid>https://orcid.org/0000-0002-3488-6124</orcidid><orcidid>https://orcid.org/0000-0002-5662-5240</orcidid><orcidid>https://orcid.org/0000-0003-1431-322X</orcidid><orcidid>https://orcid.org/0000-0003-4919-3707</orcidid><orcidid>https://orcid.org/0000-0002-4651-677X</orcidid><orcidid>https://orcid.org/0000-0003-0457-0337</orcidid><orcidid>https://orcid.org/0000-0003-1362-3541</orcidid><orcidid>https://orcid.org/0000-0002-8254-8242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2021-03, Vol.40 (9), p.1578-1594 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7932926 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/1 13/109 13/31 14/19 38/77 38/91 45 631/67/1504/1829 631/67/1857 64/60 82/80 AKT protein Antitumor activity Apoptosis Apoptosis - genetics Carcinogenesis Carcinogenesis - genetics Care and treatment Carrier Proteins - genetics Cell Biology Cell cycle Cell growth Cell Line, Tumor Cell Movement - genetics Cell proliferation Cell Proliferation - genetics Cisplatin Cisplatin - pharmacology Datasets Development and progression Drug Resistance, Neoplasm - genetics Epigenetics Epstein-Barr virus Fluorouracil - pharmacology Gastric cancer Gene amplification Gene expression Gene Expression Regulation, Neoplastic - drug effects Genetic aspects Genetic regulation Health aspects Human Genetics Humans Infections Internal Medicine Medicine Medicine & Public Health MicroRNA MicroRNAs MicroRNAs - genetics miRNA Molecular modelling Mutation Notch protein Notch3 protein Oncogene Protein v-akt - genetics Oncology Pathogenesis Receptor, Notch3 - genetics RNA, Small Interfering - genetics siRNA Stomach cancer Stomach Neoplasms - genetics Stomach Neoplasms - pathology TOR protein TOR Serine-Threonine Kinases - genetics Tumor suppressor genes Tumors |
title | NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOTCH3,%20a%20crucial%20target%20of%20miR-491-5p/miR-875-5p,%20promotes%20gastric%20carcinogenesis%20by%20upregulating%20PHLDB2%20expression%20and%20activating%20Akt%20pathway&rft.jtitle=Oncogene&rft.au=Kang,%20Wei&rft.date=2021-03-04&rft.volume=40&rft.issue=9&rft.spage=1578&rft.epage=1594&rft.pages=1578-1594&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-020-01579-3&rft_dat=%3Cgale_pubme%3EA655714023%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496262958&rft_id=info:pmid/33452458&rft_galeid=A655714023&rfr_iscdi=true |