Twitter Response to Munich July 2016 Attack: Network Analysis of Influence
Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter...
Gespeichert in:
Veröffentlicht in: | Frontiers in big data 2019-06, Vol.2, p.17-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 17 |
container_title | Frontiers in big data |
container_volume | 2 |
creator | Bermudez, Ivan Cleven, Daniel Gera, Ralucca Kiser, Erik T Newlin, Timothy Saxena, Akrati |
description | Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword
on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing
beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the
conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time. |
doi_str_mv | 10.3389/fdata.2019.00017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500373958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIVqV3TshHLi12nDgxB6Sq4tGqgISKxM1ynDUNTeMSO1T9e9IHVbnsrrQzs6sZhC4p6TOWiBuTKa_6AaGiTwih8QlqBzwIe4KIj9OjuYW6zn01kCAiEaXsHLUY44KxkLTReLrKvYcKv4Fb2tIB9hY_12WuZ3hcF2vc6HM88F7p-S1-Ab-y1RwPSlWsXe6wNXhUmqKGUsMFOjOqcNDd9w56f7ifDp96k9fH0XAw6WkmuO9BYEgYpoFJVCJYmKXCRDzRlEYpsMQ0RQnDozTTBFTEaZaGARCitOKas5SwDrrb6S7rdAGZhtJXqpDLKl-oai2tyuX_TZnP5Kf9kbFgVPC4EbjeC1T2uwbn5SJ3GopClWBrJxufCIuZiJIGSnZQXVnnKjCHM5TITQpym4LcpCC3KTSUq-P3DoQ_z9kvfHCErg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500373958</pqid></control><display><type>article</type><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</creator><creatorcontrib>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</creatorcontrib><description>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword
on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing
beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the
conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</description><identifier>ISSN: 2624-909X</identifier><identifier>EISSN: 2624-909X</identifier><identifier>DOI: 10.3389/fdata.2019.00017</identifier><identifier>PMID: 33693340</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Big Data</subject><ispartof>Frontiers in big data, 2019-06, Vol.2, p.17-17</ispartof><rights>Copyright © 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena.</rights><rights>Copyright © 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena. 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</citedby><cites>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33693340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bermudez, Ivan</creatorcontrib><creatorcontrib>Cleven, Daniel</creatorcontrib><creatorcontrib>Gera, Ralucca</creatorcontrib><creatorcontrib>Kiser, Erik T</creatorcontrib><creatorcontrib>Newlin, Timothy</creatorcontrib><creatorcontrib>Saxena, Akrati</creatorcontrib><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><title>Frontiers in big data</title><addtitle>Front Big Data</addtitle><description>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword
on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing
beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the
conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</description><subject>Big Data</subject><issn>2624-909X</issn><issn>2624-909X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBCIVqV3TshHLi12nDgxB6Sq4tGqgISKxM1ynDUNTeMSO1T9e9IHVbnsrrQzs6sZhC4p6TOWiBuTKa_6AaGiTwih8QlqBzwIe4KIj9OjuYW6zn01kCAiEaXsHLUY44KxkLTReLrKvYcKv4Fb2tIB9hY_12WuZ3hcF2vc6HM88F7p-S1-Ab-y1RwPSlWsXe6wNXhUmqKGUsMFOjOqcNDd9w56f7ifDp96k9fH0XAw6WkmuO9BYEgYpoFJVCJYmKXCRDzRlEYpsMQ0RQnDozTTBFTEaZaGARCitOKas5SwDrrb6S7rdAGZhtJXqpDLKl-oai2tyuX_TZnP5Kf9kbFgVPC4EbjeC1T2uwbn5SJ3GopClWBrJxufCIuZiJIGSnZQXVnnKjCHM5TITQpym4LcpCC3KTSUq-P3DoQ_z9kvfHCErg</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Bermudez, Ivan</creator><creator>Cleven, Daniel</creator><creator>Gera, Ralucca</creator><creator>Kiser, Erik T</creator><creator>Newlin, Timothy</creator><creator>Saxena, Akrati</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190625</creationdate><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><author>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Big Data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bermudez, Ivan</creatorcontrib><creatorcontrib>Cleven, Daniel</creatorcontrib><creatorcontrib>Gera, Ralucca</creatorcontrib><creatorcontrib>Kiser, Erik T</creatorcontrib><creatorcontrib>Newlin, Timothy</creatorcontrib><creatorcontrib>Saxena, Akrati</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bermudez, Ivan</au><au>Cleven, Daniel</au><au>Gera, Ralucca</au><au>Kiser, Erik T</au><au>Newlin, Timothy</au><au>Saxena, Akrati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</atitle><jtitle>Frontiers in big data</jtitle><addtitle>Front Big Data</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>2</volume><spage>17</spage><epage>17</epage><pages>17-17</pages><issn>2624-909X</issn><eissn>2624-909X</eissn><abstract>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword
on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing
beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the
conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33693340</pmid><doi>10.3389/fdata.2019.00017</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-909X |
ispartof | Frontiers in big data, 2019-06, Vol.2, p.17-17 |
issn | 2624-909X 2624-909X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931967 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Big Data |
title | Twitter Response to Munich July 2016 Attack: Network Analysis of Influence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twitter%20Response%20to%20Munich%20July%202016%20Attack:%20Network%20Analysis%20of%20Influence&rft.jtitle=Frontiers%20in%20big%20data&rft.au=Bermudez,%20Ivan&rft.date=2019-06-25&rft.volume=2&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.issn=2624-909X&rft.eissn=2624-909X&rft_id=info:doi/10.3389/fdata.2019.00017&rft_dat=%3Cproquest_pubme%3E2500373958%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500373958&rft_id=info:pmid/33693340&rfr_iscdi=true |