Twitter Response to Munich July 2016 Attack: Network Analysis of Influence

Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in big data 2019-06, Vol.2, p.17-17
Hauptverfasser: Bermudez, Ivan, Cleven, Daniel, Gera, Ralucca, Kiser, Erik T, Newlin, Timothy, Saxena, Akrati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 17
container_title Frontiers in big data
container_volume 2
creator Bermudez, Ivan
Cleven, Daniel
Gera, Ralucca
Kiser, Erik T
Newlin, Timothy
Saxena, Akrati
description Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.
doi_str_mv 10.3389/fdata.2019.00017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500373958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIVqV3TshHLi12nDgxB6Sq4tGqgISKxM1ynDUNTeMSO1T9e9IHVbnsrrQzs6sZhC4p6TOWiBuTKa_6AaGiTwih8QlqBzwIe4KIj9OjuYW6zn01kCAiEaXsHLUY44KxkLTReLrKvYcKv4Fb2tIB9hY_12WuZ3hcF2vc6HM88F7p-S1-Ab-y1RwPSlWsXe6wNXhUmqKGUsMFOjOqcNDd9w56f7ifDp96k9fH0XAw6WkmuO9BYEgYpoFJVCJYmKXCRDzRlEYpsMQ0RQnDozTTBFTEaZaGARCitOKas5SwDrrb6S7rdAGZhtJXqpDLKl-oai2tyuX_TZnP5Kf9kbFgVPC4EbjeC1T2uwbn5SJ3GopClWBrJxufCIuZiJIGSnZQXVnnKjCHM5TITQpym4LcpCC3KTSUq-P3DoQ_z9kvfHCErg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500373958</pqid></control><display><type>article</type><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</creator><creatorcontrib>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</creatorcontrib><description>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</description><identifier>ISSN: 2624-909X</identifier><identifier>EISSN: 2624-909X</identifier><identifier>DOI: 10.3389/fdata.2019.00017</identifier><identifier>PMID: 33693340</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Big Data</subject><ispartof>Frontiers in big data, 2019-06, Vol.2, p.17-17</ispartof><rights>Copyright © 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena.</rights><rights>Copyright © 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena. 2019 Bermudez, Cleven, Gera, Kiser, Newlin and Saxena</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</citedby><cites>FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33693340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bermudez, Ivan</creatorcontrib><creatorcontrib>Cleven, Daniel</creatorcontrib><creatorcontrib>Gera, Ralucca</creatorcontrib><creatorcontrib>Kiser, Erik T</creatorcontrib><creatorcontrib>Newlin, Timothy</creatorcontrib><creatorcontrib>Saxena, Akrati</creatorcontrib><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><title>Frontiers in big data</title><addtitle>Front Big Data</addtitle><description>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</description><subject>Big Data</subject><issn>2624-909X</issn><issn>2624-909X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBCIVqV3TshHLi12nDgxB6Sq4tGqgISKxM1ynDUNTeMSO1T9e9IHVbnsrrQzs6sZhC4p6TOWiBuTKa_6AaGiTwih8QlqBzwIe4KIj9OjuYW6zn01kCAiEaXsHLUY44KxkLTReLrKvYcKv4Fb2tIB9hY_12WuZ3hcF2vc6HM88F7p-S1-Ab-y1RwPSlWsXe6wNXhUmqKGUsMFOjOqcNDd9w56f7ifDp96k9fH0XAw6WkmuO9BYEgYpoFJVCJYmKXCRDzRlEYpsMQ0RQnDozTTBFTEaZaGARCitOKas5SwDrrb6S7rdAGZhtJXqpDLKl-oai2tyuX_TZnP5Kf9kbFgVPC4EbjeC1T2uwbn5SJ3GopClWBrJxufCIuZiJIGSnZQXVnnKjCHM5TITQpym4LcpCC3KTSUq-P3DoQ_z9kvfHCErg</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Bermudez, Ivan</creator><creator>Cleven, Daniel</creator><creator>Gera, Ralucca</creator><creator>Kiser, Erik T</creator><creator>Newlin, Timothy</creator><creator>Saxena, Akrati</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190625</creationdate><title>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</title><author>Bermudez, Ivan ; Cleven, Daniel ; Gera, Ralucca ; Kiser, Erik T ; Newlin, Timothy ; Saxena, Akrati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e2f044b2f8a8934db9f568c115be38fbe3a9f65bdc0ea561db42e00aca6c63b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Big Data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bermudez, Ivan</creatorcontrib><creatorcontrib>Cleven, Daniel</creatorcontrib><creatorcontrib>Gera, Ralucca</creatorcontrib><creatorcontrib>Kiser, Erik T</creatorcontrib><creatorcontrib>Newlin, Timothy</creatorcontrib><creatorcontrib>Saxena, Akrati</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bermudez, Ivan</au><au>Cleven, Daniel</au><au>Gera, Ralucca</au><au>Kiser, Erik T</au><au>Newlin, Timothy</au><au>Saxena, Akrati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twitter Response to Munich July 2016 Attack: Network Analysis of Influence</atitle><jtitle>Frontiers in big data</jtitle><addtitle>Front Big Data</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>2</volume><spage>17</spage><epage>17</epage><pages>17-17</pages><issn>2624-909X</issn><eissn>2624-909X</eissn><abstract>Social Media platforms in Cyberspace provide communication channels for individuals, businesses, as well as state and non-state actors (i.e., individuals and groups) to conduct messaging campaigns. What are the spheres of influence that arose around the keyword on Twitter following an active shooter event at a Munich shopping mall in July 2016? To answer that question in this work, we capture tweets utilizing beginning 1 h after the shooting was reported, and the data collection ends approximately 1 month later. We construct both daily networks and a cumulative network from this data. We analyze community evolution using the standard Louvain algorithm, and how the communities change over time to study how they both encourage and discourage the effectiveness of an information messaging campaign. We conclude that the large communities observed in the early stage of the data disappear from the conversation within 7 days. The politically charged nature of many of these communities suggests their activity is migrated to other Twitter hashtags (i.e., conversation topics). Future analysis of Twitter activity might focus on tracking communities across topics and time.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33693340</pmid><doi>10.3389/fdata.2019.00017</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-909X
ispartof Frontiers in big data, 2019-06, Vol.2, p.17-17
issn 2624-909X
2624-909X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7931967
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Big Data
title Twitter Response to Munich July 2016 Attack: Network Analysis of Influence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twitter%20Response%20to%20Munich%20July%202016%20Attack:%20Network%20Analysis%20of%20Influence&rft.jtitle=Frontiers%20in%20big%20data&rft.au=Bermudez,%20Ivan&rft.date=2019-06-25&rft.volume=2&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.issn=2624-909X&rft.eissn=2624-909X&rft_id=info:doi/10.3389/fdata.2019.00017&rft_dat=%3Cproquest_pubme%3E2500373958%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500373958&rft_id=info:pmid/33693340&rfr_iscdi=true