Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition

The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe consequences, especially in difficult ground c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.6678355-6678355
Hauptverfasser: Wang, Qiang, Xie, Xiongyao, Yu, Hongjie, Mooney, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6678355
container_issue 1
container_start_page 6678355
container_title Computational intelligence and neuroscience
container_volume 2021
creator Wang, Qiang
Xie, Xiongyao
Yu, Hongjie
Mooney, Michael A
description The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe consequences, especially in difficult ground conditions. From a practical perspective, it is therefore beneficial to have a model capable of predicting the tunnel face pressure given operation and the changing geology. In this paper, we propose such a model based on deep learning. More specifically, a long short-term memory (LSTM) recurrent neural network is employed for tunnel face pressure prediction. To correlate with PLC data, linear interpolation is employed to transform the borehole geological data into sequential geological data according to the shield machine position. The slurry pressure in the excavation chamber (SPE) is taken as the output in the case study of Nanning Metro, which is confronted with the clogging problem due to the mixed ground of mudstone and round gravel. The LSTM-based SPE prediction model achieved an overall MAPE and RMSE of 3.83% and 10.3 kPa, respectively, in mudstone rich ground conditions. Factors that influence the model, including different kinds and length of input data and comparison with the traditional machine learning-based model, are also discussed.
doi_str_mv 10.1155/2021/6678355
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7930917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696994369</galeid><sourcerecordid>A696994369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-4da68505bad760ada23057533ed3e6a41f7b5ac3975bb4169bf10e2a030f04843</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0Eog_YsUaW2CCVtH7EdrxBagcolYaHoKwtx3FmXBK7tR1G_fc4mmF4LFhdy_587rn3APAMo1OMGTsjiOAzzkVDGXsADjFvRMWIoA_3Z84OwFFKNwgxwRB5DA4oFaghtTwEm8_Rds5k51fw6zDFeA_LTUpTtPBCD9obCzcur6GGyzAz6xBzdW3jCD_YMRT8izXlm_UZfrRT1EMpeRPid-g8fOP63plpyPAyhsl3cBF857IL_gl41Osh2ae7egy-vXt7vXhfLT9dXi3Ol5VhmOWq7jRvGGKt7gRHutOEzkNQajtqua5xL1qmDZWCtW2NuWx7jCzRiKIe1U1Nj8Hrre7t1I62M8Vn8ahuoxt1vFdBO_X3i3drtQo_lJAUSSyKwMudQAx3k01ZjS4ZO5TV2DAlRRjChDFCcUFf_IPehCn6Mp4quxZNUwtCf1MrPVjlfB9KXzOLqnMuuZQ15bJQr7aUiSGlaPu9ZYzUnLuac1e73Av-_M8x9_CvoAtwsgXWznd64_4v9xMifbUb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497884723</pqid></control><display><type>article</type><title>Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Wang, Qiang ; Xie, Xiongyao ; Yu, Hongjie ; Mooney, Michael A</creator><contributor>Namin, Akbar S. ; Akbar S Namin</contributor><creatorcontrib>Wang, Qiang ; Xie, Xiongyao ; Yu, Hongjie ; Mooney, Michael A ; Namin, Akbar S. ; Akbar S Namin</creatorcontrib><description>The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe consequences, especially in difficult ground conditions. From a practical perspective, it is therefore beneficial to have a model capable of predicting the tunnel face pressure given operation and the changing geology. In this paper, we propose such a model based on deep learning. More specifically, a long short-term memory (LSTM) recurrent neural network is employed for tunnel face pressure prediction. To correlate with PLC data, linear interpolation is employed to transform the borehole geological data into sequential geological data according to the shield machine position. The slurry pressure in the excavation chamber (SPE) is taken as the output in the case study of Nanning Metro, which is confronted with the clogging problem due to the mixed ground of mudstone and round gravel. The LSTM-based SPE prediction model achieved an overall MAPE and RMSE of 3.83% and 10.3 kPa, respectively, in mudstone rich ground conditions. Factors that influence the model, including different kinds and length of input data and comparison with the traditional machine learning-based model, are also discussed.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2021/6678355</identifier><identifier>PMID: 33708249</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Accuracy ; Analysis ; Big Data ; Boreholes ; Boring machines ; Datasets ; Deep learning ; Geology ; Human error ; Interpolation ; Learning algorithms ; Long short-term memory ; Machine learning ; Mudstone ; Neural networks ; Prediction models ; Pressure ; Programmable logic controllers ; Recurrent neural networks ; Slurries ; Time series ; Tunnel construction ; Tunneling shields</subject><ispartof>Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.6678355-6678355</ispartof><rights>Copyright © 2021 Qiang Wang et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Qiang Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Qiang Wang et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-4da68505bad760ada23057533ed3e6a41f7b5ac3975bb4169bf10e2a030f04843</citedby><cites>FETCH-LOGICAL-c515t-4da68505bad760ada23057533ed3e6a41f7b5ac3975bb4169bf10e2a030f04843</cites><orcidid>0000-0002-5357-4003 ; 0000-0002-4797-4051 ; 0000-0001-9063-1209 ; 0000-0003-1336-1780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930917/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930917/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33708249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Namin, Akbar S.</contributor><contributor>Akbar S Namin</contributor><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Xie, Xiongyao</creatorcontrib><creatorcontrib>Yu, Hongjie</creatorcontrib><creatorcontrib>Mooney, Michael A</creatorcontrib><title>Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe consequences, especially in difficult ground conditions. From a practical perspective, it is therefore beneficial to have a model capable of predicting the tunnel face pressure given operation and the changing geology. In this paper, we propose such a model based on deep learning. More specifically, a long short-term memory (LSTM) recurrent neural network is employed for tunnel face pressure prediction. To correlate with PLC data, linear interpolation is employed to transform the borehole geological data into sequential geological data according to the shield machine position. The slurry pressure in the excavation chamber (SPE) is taken as the output in the case study of Nanning Metro, which is confronted with the clogging problem due to the mixed ground of mudstone and round gravel. The LSTM-based SPE prediction model achieved an overall MAPE and RMSE of 3.83% and 10.3 kPa, respectively, in mudstone rich ground conditions. Factors that influence the model, including different kinds and length of input data and comparison with the traditional machine learning-based model, are also discussed.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Big Data</subject><subject>Boreholes</subject><subject>Boring machines</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Geology</subject><subject>Human error</subject><subject>Interpolation</subject><subject>Learning algorithms</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Mudstone</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Pressure</subject><subject>Programmable logic controllers</subject><subject>Recurrent neural networks</subject><subject>Slurries</subject><subject>Time series</subject><subject>Tunnel construction</subject><subject>Tunneling shields</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhS0Eog_YsUaW2CCVtH7EdrxBagcolYaHoKwtx3FmXBK7tR1G_fc4mmF4LFhdy_587rn3APAMo1OMGTsjiOAzzkVDGXsADjFvRMWIoA_3Z84OwFFKNwgxwRB5DA4oFaghtTwEm8_Rds5k51fw6zDFeA_LTUpTtPBCD9obCzcur6GGyzAz6xBzdW3jCD_YMRT8izXlm_UZfrRT1EMpeRPid-g8fOP63plpyPAyhsl3cBF857IL_gl41Osh2ae7egy-vXt7vXhfLT9dXi3Ol5VhmOWq7jRvGGKt7gRHutOEzkNQajtqua5xL1qmDZWCtW2NuWx7jCzRiKIe1U1Nj8Hrre7t1I62M8Vn8ahuoxt1vFdBO_X3i3drtQo_lJAUSSyKwMudQAx3k01ZjS4ZO5TV2DAlRRjChDFCcUFf_IPehCn6Mp4quxZNUwtCf1MrPVjlfB9KXzOLqnMuuZQ15bJQr7aUiSGlaPu9ZYzUnLuac1e73Av-_M8x9_CvoAtwsgXWznd64_4v9xMifbUb</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Qiang</creator><creator>Xie, Xiongyao</creator><creator>Yu, Hongjie</creator><creator>Mooney, Michael A</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5357-4003</orcidid><orcidid>https://orcid.org/0000-0002-4797-4051</orcidid><orcidid>https://orcid.org/0000-0001-9063-1209</orcidid><orcidid>https://orcid.org/0000-0003-1336-1780</orcidid></search><sort><creationdate>2021</creationdate><title>Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition</title><author>Wang, Qiang ; Xie, Xiongyao ; Yu, Hongjie ; Mooney, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-4da68505bad760ada23057533ed3e6a41f7b5ac3975bb4169bf10e2a030f04843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Big Data</topic><topic>Boreholes</topic><topic>Boring machines</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Geology</topic><topic>Human error</topic><topic>Interpolation</topic><topic>Learning algorithms</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Mudstone</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Pressure</topic><topic>Programmable logic controllers</topic><topic>Recurrent neural networks</topic><topic>Slurries</topic><topic>Time series</topic><topic>Tunnel construction</topic><topic>Tunneling shields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Xie, Xiongyao</creatorcontrib><creatorcontrib>Yu, Hongjie</creatorcontrib><creatorcontrib>Mooney, Michael A</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiang</au><au>Xie, Xiongyao</au><au>Yu, Hongjie</au><au>Mooney, Michael A</au><au>Namin, Akbar S.</au><au>Akbar S Namin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>6678355</spage><epage>6678355</epage><pages>6678355-6678355</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe consequences, especially in difficult ground conditions. From a practical perspective, it is therefore beneficial to have a model capable of predicting the tunnel face pressure given operation and the changing geology. In this paper, we propose such a model based on deep learning. More specifically, a long short-term memory (LSTM) recurrent neural network is employed for tunnel face pressure prediction. To correlate with PLC data, linear interpolation is employed to transform the borehole geological data into sequential geological data according to the shield machine position. The slurry pressure in the excavation chamber (SPE) is taken as the output in the case study of Nanning Metro, which is confronted with the clogging problem due to the mixed ground of mudstone and round gravel. The LSTM-based SPE prediction model achieved an overall MAPE and RMSE of 3.83% and 10.3 kPa, respectively, in mudstone rich ground conditions. Factors that influence the model, including different kinds and length of input data and comparison with the traditional machine learning-based model, are also discussed.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33708249</pmid><doi>10.1155/2021/6678355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5357-4003</orcidid><orcidid>https://orcid.org/0000-0002-4797-4051</orcidid><orcidid>https://orcid.org/0000-0001-9063-1209</orcidid><orcidid>https://orcid.org/0000-0003-1336-1780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.6678355-6678355
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7930917
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Accuracy
Analysis
Big Data
Boreholes
Boring machines
Datasets
Deep learning
Geology
Human error
Interpolation
Learning algorithms
Long short-term memory
Machine learning
Mudstone
Neural networks
Prediction models
Pressure
Programmable logic controllers
Recurrent neural networks
Slurries
Time series
Tunnel construction
Tunneling shields
title Predicting Slurry Pressure Balance with a Long Short-Term Memory Recurrent Neural Network in Difficult Ground Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Slurry%20Pressure%20Balance%20with%20a%20Long%20Short-Term%20Memory%20Recurrent%20Neural%20Network%20in%20Difficult%20Ground%20Condition&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Wang,%20Qiang&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=6678355&rft.epage=6678355&rft.pages=6678355-6678355&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2021/6678355&rft_dat=%3Cgale_pubme%3EA696994369%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497884723&rft_id=info:pmid/33708249&rft_galeid=A696994369&rfr_iscdi=true