Quantitative assessment of six different reagent gases for charge transfer dissociation (CTD) of biological ions

Charge transfer dissociation mass spectrometry (CTD-MS) has been shown to induce high energy fragmentation of biological ions in the gas phase and provide fragmentation spectra similar to extreme ultraviolet photodissociation (XUVPD). To date, CTD has typically employed helium cations with kinetic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mass spectrometry 2021-04, Vol.462, p.116532, Article 116532
Hauptverfasser: Sasiene, Zachary J., Mendis, Praneeth M., Jackson, Glen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Charge transfer dissociation mass spectrometry (CTD-MS) has been shown to induce high energy fragmentation of biological ions in the gas phase and provide fragmentation spectra similar to extreme ultraviolet photodissociation (XUVPD). To date, CTD has typically employed helium cations with kinetic energies between 4-10 keV to initiate radical-directed fragmentation of analytes. However, as a reagent, helium has recently been listed as a critical mineral that is becoming scarcer and more expensive, so this study explored the potential for using cheaper and more readily available reagent gases. A model peptide, bradykinin, and a model oligosaccharide, κ-carrageenan with a degree of polymerization of 4, were fragmented using a variety of CTD reagent gases, which included helium, hydrogen, oxygen, nitrogen, argon and lab air. The CTD results were also contrasted with low-energy collision-induced dissociation (LE-CID), which were collected on the same 3D ion trap. Using constant reagent ion fluxes and kinetic energies, all five alterative reagent gases generated remarkably consistent sequence coverage and fragmentation efficiencies relative to He-CTD, which suggests that the ionization energy of the reagent gas has a negligible effect on the activation of the biological ions. The CTD efficiencies of all the gases ranged from 11-13% for bradykinin and 7-8% for κ-carrageenan. Within these tight ranges, the abundance of the CTnoD peak of bradykinin and the efficiency of CTD fragmentation of bradykinin both correlated with the ionization energy of the CTD reagent gas, which suggests that resonant charge transfer plays a small role in the activation of this peptide. The majority of the excitation energy for bradykinin and for κ-carrageenan comes from an electron stopping mechanism, which is described by long-range interactions between the reagent cations and electrons in the highest occupied molecular orbitals (HOMOs) of the biological ions. The CTD spectra do not provide any evidence for covalently bound products between the biological ions and the more-reactive gases like hydrogen, oxygen and nitrogen, which implies that the high kinetic energies of the reagent ions make them unavailable for covalent reactions. This work demonstrates that any of the substitute reagent gases tested are viable options for future CTD-MS experiments. [Display omitted] •Six different gases studied as reagents for charge transfer dissociation.•Ionization energy of reagent gas has minima
ISSN:1387-3806
1873-2798
DOI:10.1016/j.ijms.2021.116532