Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research
Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering ke...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2021-03, Vol.20 (3), p.1457-1463 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1463 |
---|---|
container_issue | 3 |
container_start_page | 1457 |
container_title | Journal of proteome research |
container_volume | 20 |
creator | Kruglikov, Alibek Rakesh, Mohan Wei, Yulong Xia, Xuhua |
description | Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics. |
doi_str_mv | 10.1021/acs.jproteome.0c00734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492660474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</originalsourceid><addsrcrecordid>eNqFkU1OwzAQhS0EoqVwBFCWbFpsTxwnG6Sq4k-qVNQCW8txnTZVEgc7QWLHFbgiJ8GlP4IVK4_k7715mofQOcEDgim5ksoNVrU1jTalHmCFMYfwAHUJA9aHBPPD3Rwn0EEnzq0wJoxjOEYdgIhwyqCLJsO6LnIlm9xULjBZ8Li2zKtgppWp5tK-B7PGtqpprQ6GxcLYvFmWLlgTw-msPzIvXx-fNJhqp6VVy1N0lMnC6bPt20PPtzdPo_v-eHL3MBqO-zJk0PiAAJDhOE4Uw5JlSnEuGUlVGNIoSqmKIKIynmdAmdJpDGkaaprymCoNMcPQQ9cb37pNSz1XumqsLERt89JnFkbm4u9PlS_FwrwJnlBOY-oNLrcG1ry22jWizJ3SRSErbVonaJj4JDjkoUfZBlXWOGd1tl9DsFiXIXwZYl-G2JbhdRe_M-5Vu-t7gGyAH71pbeVP9o_pN-WOnFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492660474</pqid></control><display><type>article</type><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</creator><creatorcontrib>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</creatorcontrib><description>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00734</identifier><identifier>PMID: 33617253</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Angiotensin-Converting Enzyme 2 - chemistry ; Angiotensin-Converting Enzyme 2 - genetics ; Animals ; COVID-19 - genetics ; COVID-19 - virology ; Genome, Viral ; Host Microbial Interactions - genetics ; Humans ; Models, Molecular ; Pandemics ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteomics - statistics & numerical data ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Reviews ; SARS-CoV-2 - chemistry ; SARS-CoV-2 - genetics ; SARS-CoV-2 - pathogenicity ; Sequence Alignment ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics</subject><ispartof>Journal of proteome research, 2021-03, Vol.20 (3), p.1457-1463</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</citedby><cites>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</cites><orcidid>0000-0002-3092-7566 ; 0000-0001-6074-8764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.0c00734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.0c00734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33617253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruglikov, Alibek</creatorcontrib><creatorcontrib>Rakesh, Mohan</creatorcontrib><creatorcontrib>Wei, Yulong</creatorcontrib><creatorcontrib>Xia, Xuhua</creatorcontrib><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</description><subject>Algorithms</subject><subject>Angiotensin-Converting Enzyme 2 - chemistry</subject><subject>Angiotensin-Converting Enzyme 2 - genetics</subject><subject>Animals</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - virology</subject><subject>Genome, Viral</subject><subject>Host Microbial Interactions - genetics</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Pandemics</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>Proteomics - statistics & numerical data</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Reviews</subject><subject>SARS-CoV-2 - chemistry</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Sequence Alignment</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1OwzAQhS0EoqVwBFCWbFpsTxwnG6Sq4k-qVNQCW8txnTZVEgc7QWLHFbgiJ8GlP4IVK4_k7715mofQOcEDgim5ksoNVrU1jTalHmCFMYfwAHUJA9aHBPPD3Rwn0EEnzq0wJoxjOEYdgIhwyqCLJsO6LnIlm9xULjBZ8Li2zKtgppWp5tK-B7PGtqpprQ6GxcLYvFmWLlgTw-msPzIvXx-fNJhqp6VVy1N0lMnC6bPt20PPtzdPo_v-eHL3MBqO-zJk0PiAAJDhOE4Uw5JlSnEuGUlVGNIoSqmKIKIynmdAmdJpDGkaaprymCoNMcPQQ9cb37pNSz1XumqsLERt89JnFkbm4u9PlS_FwrwJnlBOY-oNLrcG1ry22jWizJ3SRSErbVonaJj4JDjkoUfZBlXWOGd1tl9DsFiXIXwZYl-G2JbhdRe_M-5Vu-t7gGyAH71pbeVP9o_pN-WOnFY</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Kruglikov, Alibek</creator><creator>Rakesh, Mohan</creator><creator>Wei, Yulong</creator><creator>Xia, Xuhua</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3092-7566</orcidid><orcidid>https://orcid.org/0000-0001-6074-8764</orcidid></search><sort><creationdate>20210305</creationdate><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><author>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Angiotensin-Converting Enzyme 2 - chemistry</topic><topic>Angiotensin-Converting Enzyme 2 - genetics</topic><topic>Animals</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - virology</topic><topic>Genome, Viral</topic><topic>Host Microbial Interactions - genetics</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Pandemics</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>Proteomics - statistics & numerical data</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Reviews</topic><topic>SARS-CoV-2 - chemistry</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Sequence Alignment</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruglikov, Alibek</creatorcontrib><creatorcontrib>Rakesh, Mohan</creatorcontrib><creatorcontrib>Wei, Yulong</creatorcontrib><creatorcontrib>Xia, Xuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruglikov, Alibek</au><au>Rakesh, Mohan</au><au>Wei, Yulong</au><au>Xia, Xuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>1457</spage><epage>1463</epage><pages>1457-1463</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33617253</pmid><doi>10.1021/acs.jproteome.0c00734</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3092-7566</orcidid><orcidid>https://orcid.org/0000-0001-6074-8764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2021-03, Vol.20 (3), p.1457-1463 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927282 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - genetics Animals COVID-19 - genetics COVID-19 - virology Genome, Viral Host Microbial Interactions - genetics Humans Models, Molecular Pandemics Protein Interaction Domains and Motifs Protein Structure, Secondary Proteomics - statistics & numerical data Receptors, Virus - chemistry Receptors, Virus - genetics Reviews SARS-CoV-2 - chemistry SARS-CoV-2 - genetics SARS-CoV-2 - pathogenicity Sequence Alignment Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics |
title | Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Protein%20Secondary%20Structure%20Algorithms%20in%20SARS-CoV%E2%80%912%20Research&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Kruglikov,%20Alibek&rft.date=2021-03-05&rft.volume=20&rft.issue=3&rft.spage=1457&rft.epage=1463&rft.pages=1457-1463&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00734&rft_dat=%3Cproquest_pubme%3E2492660474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492660474&rft_id=info:pmid/33617253&rfr_iscdi=true |