Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research

Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering ke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2021-03, Vol.20 (3), p.1457-1463
Hauptverfasser: Kruglikov, Alibek, Rakesh, Mohan, Wei, Yulong, Xia, Xuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1463
container_issue 3
container_start_page 1457
container_title Journal of proteome research
container_volume 20
creator Kruglikov, Alibek
Rakesh, Mohan
Wei, Yulong
Xia, Xuhua
description Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.
doi_str_mv 10.1021/acs.jproteome.0c00734
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492660474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</originalsourceid><addsrcrecordid>eNqFkU1OwzAQhS0EoqVwBFCWbFpsTxwnG6Sq4k-qVNQCW8txnTZVEgc7QWLHFbgiJ8GlP4IVK4_k7715mofQOcEDgim5ksoNVrU1jTalHmCFMYfwAHUJA9aHBPPD3Rwn0EEnzq0wJoxjOEYdgIhwyqCLJsO6LnIlm9xULjBZ8Li2zKtgppWp5tK-B7PGtqpprQ6GxcLYvFmWLlgTw-msPzIvXx-fNJhqp6VVy1N0lMnC6bPt20PPtzdPo_v-eHL3MBqO-zJk0PiAAJDhOE4Uw5JlSnEuGUlVGNIoSqmKIKIynmdAmdJpDGkaaprymCoNMcPQQ9cb37pNSz1XumqsLERt89JnFkbm4u9PlS_FwrwJnlBOY-oNLrcG1ry22jWizJ3SRSErbVonaJj4JDjkoUfZBlXWOGd1tl9DsFiXIXwZYl-G2JbhdRe_M-5Vu-t7gGyAH71pbeVP9o_pN-WOnFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492660474</pqid></control><display><type>article</type><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</creator><creatorcontrib>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</creatorcontrib><description>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00734</identifier><identifier>PMID: 33617253</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Angiotensin-Converting Enzyme 2 - chemistry ; Angiotensin-Converting Enzyme 2 - genetics ; Animals ; COVID-19 - genetics ; COVID-19 - virology ; Genome, Viral ; Host Microbial Interactions - genetics ; Humans ; Models, Molecular ; Pandemics ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteomics - statistics &amp; numerical data ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Reviews ; SARS-CoV-2 - chemistry ; SARS-CoV-2 - genetics ; SARS-CoV-2 - pathogenicity ; Sequence Alignment ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics</subject><ispartof>Journal of proteome research, 2021-03, Vol.20 (3), p.1457-1463</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</citedby><cites>FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</cites><orcidid>0000-0002-3092-7566 ; 0000-0001-6074-8764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.0c00734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.0c00734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33617253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruglikov, Alibek</creatorcontrib><creatorcontrib>Rakesh, Mohan</creatorcontrib><creatorcontrib>Wei, Yulong</creatorcontrib><creatorcontrib>Xia, Xuhua</creatorcontrib><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</description><subject>Algorithms</subject><subject>Angiotensin-Converting Enzyme 2 - chemistry</subject><subject>Angiotensin-Converting Enzyme 2 - genetics</subject><subject>Animals</subject><subject>COVID-19 - genetics</subject><subject>COVID-19 - virology</subject><subject>Genome, Viral</subject><subject>Host Microbial Interactions - genetics</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Pandemics</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>Proteomics - statistics &amp; numerical data</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Reviews</subject><subject>SARS-CoV-2 - chemistry</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Sequence Alignment</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1OwzAQhS0EoqVwBFCWbFpsTxwnG6Sq4k-qVNQCW8txnTZVEgc7QWLHFbgiJ8GlP4IVK4_k7715mofQOcEDgim5ksoNVrU1jTalHmCFMYfwAHUJA9aHBPPD3Rwn0EEnzq0wJoxjOEYdgIhwyqCLJsO6LnIlm9xULjBZ8Li2zKtgppWp5tK-B7PGtqpprQ6GxcLYvFmWLlgTw-msPzIvXx-fNJhqp6VVy1N0lMnC6bPt20PPtzdPo_v-eHL3MBqO-zJk0PiAAJDhOE4Uw5JlSnEuGUlVGNIoSqmKIKIynmdAmdJpDGkaaprymCoNMcPQQ9cb37pNSz1XumqsLERt89JnFkbm4u9PlS_FwrwJnlBOY-oNLrcG1ry22jWizJ3SRSErbVonaJj4JDjkoUfZBlXWOGd1tl9DsFiXIXwZYl-G2JbhdRe_M-5Vu-t7gGyAH71pbeVP9o_pN-WOnFY</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Kruglikov, Alibek</creator><creator>Rakesh, Mohan</creator><creator>Wei, Yulong</creator><creator>Xia, Xuhua</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3092-7566</orcidid><orcidid>https://orcid.org/0000-0001-6074-8764</orcidid></search><sort><creationdate>20210305</creationdate><title>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</title><author>Kruglikov, Alibek ; Rakesh, Mohan ; Wei, Yulong ; Xia, Xuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-39333f0889c50a5fcc77a51bc44266b2c6362a8df325ceb83bb4e2b782ce38503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Angiotensin-Converting Enzyme 2 - chemistry</topic><topic>Angiotensin-Converting Enzyme 2 - genetics</topic><topic>Animals</topic><topic>COVID-19 - genetics</topic><topic>COVID-19 - virology</topic><topic>Genome, Viral</topic><topic>Host Microbial Interactions - genetics</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Pandemics</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>Proteomics - statistics &amp; numerical data</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Reviews</topic><topic>SARS-CoV-2 - chemistry</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Sequence Alignment</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruglikov, Alibek</creatorcontrib><creatorcontrib>Rakesh, Mohan</creatorcontrib><creatorcontrib>Wei, Yulong</creatorcontrib><creatorcontrib>Xia, Xuhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruglikov, Alibek</au><au>Rakesh, Mohan</au><au>Wei, Yulong</au><au>Xia, Xuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>1457</spage><epage>1463</epage><pages>1457-1463</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Since the outset of COVID-19, the pandemic has prompted immediate global efforts to sequence SARS-CoV-2, and over 450 000 complete genomes have been publicly deposited over the course of 12 months. Despite this, comparative nucleotide and amino acid sequence analyses often fall short in answering key questions in vaccine design. For example, the binding affinity between different ACE2 receptors and SARS-COV-2 spike protein cannot be fully explained by amino acid similarity at ACE2 contact sites because protein structure similarities are not fully reflected by amino acid sequence similarities. To comprehensively compare protein homology, secondary structure (SS) analysis is required. While protein structure is slow and difficult to obtain, SS predictions can be made rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained biological insights can help in speeding up response to pandemics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33617253</pmid><doi>10.1021/acs.jproteome.0c00734</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3092-7566</orcidid><orcidid>https://orcid.org/0000-0001-6074-8764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2021-03, Vol.20 (3), p.1457-1463
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927282
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - genetics
Animals
COVID-19 - genetics
COVID-19 - virology
Genome, Viral
Host Microbial Interactions - genetics
Humans
Models, Molecular
Pandemics
Protein Interaction Domains and Motifs
Protein Structure, Secondary
Proteomics - statistics & numerical data
Receptors, Virus - chemistry
Receptors, Virus - genetics
Reviews
SARS-CoV-2 - chemistry
SARS-CoV-2 - genetics
SARS-CoV-2 - pathogenicity
Sequence Alignment
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
title Applications of Protein Secondary Structure Algorithms in SARS-CoV‑2 Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20Protein%20Secondary%20Structure%20Algorithms%20in%20SARS-CoV%E2%80%912%20Research&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Kruglikov,%20Alibek&rft.date=2021-03-05&rft.volume=20&rft.issue=3&rft.spage=1457&rft.epage=1463&rft.pages=1457-1463&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00734&rft_dat=%3Cproquest_pubme%3E2492660474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492660474&rft_id=info:pmid/33617253&rfr_iscdi=true