Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates
Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2020-12, Vol.33 (13), p.108562-108562, Article 108562 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108562 |
---|---|
container_issue | 13 |
container_start_page | 108562 |
container_title | Cell reports (Cambridge) |
container_volume | 33 |
creator | Patananan, Alexander N. Sercel, Alexander J. Wu, Ting-Hsiang Ahsan, Fasih M. Torres, Alejandro Kennedy, Stephanie A.L. Vandiver, Amy Collier, Amanda J. Mehrabi, Artin Van Lew, Jon Zakin, Lise Rodriguez, Noe Sixto, Marcos Tadros, Wael Lazar, Adam Sieling, Peter A. Nguyen, Thang L. Dawson, Emma R. Braas, Daniel Golovato, Justin Cisneros, Luis Vaske, Charles Plath, Kathrin Rabizadeh, Shahrooz Niazi, Kayvan R. Chiou, Pei-Yu Teitell, Michael A. |
description | Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch “pipeline” enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
[Display omitted]
•We report a “proof-of-principle” mitochondrial transfer pipeline by MitoPunch•MitoPunch generates cells with unique mtDNA-nDNA pairs, regardless of cell source•Replacement mtDNA in non-immortal cells remains stable with cell fate conversions•Enables studies of mtDNA-nDNA interactions with reprogramming and differentiation
Patananan and colleagues demonstrate a pipeline for transferring isolated mitochondria into mtDNA-deficient recipient cells. mtDNA-depleted fibroblasts permanently retain acquired non-native mtDNA through cell fate transitions. Initially, mitochondrial recipients show mtDNA-deficient cell transcriptome and metabolome profiles, with improvement to control profiles by reprogramming to pluripotency and subsequent differentiation. |
doi_str_mv | 10.1016/j.celrep.2020.108562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720315515</els_id><sourcerecordid>2474498022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-df35e7547cdb9f04204c5823bd7df5ef99f6abeb482d0333d8124e5d1137067a3</originalsourceid><addsrcrecordid>eNp9UUFvFCEYJUZjm9p_YAxHL7MCwwwzFxOztdWkjT3UM2Hgw7JhYOWb3aT_XtattV7kAoH33sd7j5C3nK044_2HzcpCLLBdCSYOV0PXixfkVAjOGy6kevnsfELOETesrp5xPsrX5KRtWzX0AzsleFsAcVeguShhD4nehCXb-5xcCSbSu2ISeij0NmwhhgT0ChIUswDSGzPPJgaT6BpiRJo9vQAMBdxv0BIsXed5CsksISekJjl6eWC-Ia-8iQjnj_sZ-X75-W79pbn-dvV1_em6sbJvl8b5tgPVSWXdNHomBZO2G0Q7OeV8B34cfW8mmOQgHKuO3FDdQuc4bxXrlWnPyMej7nY3zeAspKWYqLclzKY86GyC_vclhXv9I--1GoXiXV8F3j8KlPxzB7joOWANPpoEeYe6hivlODAhKlQeobZkxAL-aQxn-lCZ3uhjZfpQmT5WVmnvnn_xifSnoL8eoAa1D1A02gDJgqtB20W7HP4_4Rdxvqud</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474498022</pqid></control><display><type>article</type><title>Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates</title><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Patananan, Alexander N. ; Sercel, Alexander J. ; Wu, Ting-Hsiang ; Ahsan, Fasih M. ; Torres, Alejandro ; Kennedy, Stephanie A.L. ; Vandiver, Amy ; Collier, Amanda J. ; Mehrabi, Artin ; Van Lew, Jon ; Zakin, Lise ; Rodriguez, Noe ; Sixto, Marcos ; Tadros, Wael ; Lazar, Adam ; Sieling, Peter A. ; Nguyen, Thang L. ; Dawson, Emma R. ; Braas, Daniel ; Golovato, Justin ; Cisneros, Luis ; Vaske, Charles ; Plath, Kathrin ; Rabizadeh, Shahrooz ; Niazi, Kayvan R. ; Chiou, Pei-Yu ; Teitell, Michael A.</creator><creatorcontrib>Patananan, Alexander N. ; Sercel, Alexander J. ; Wu, Ting-Hsiang ; Ahsan, Fasih M. ; Torres, Alejandro ; Kennedy, Stephanie A.L. ; Vandiver, Amy ; Collier, Amanda J. ; Mehrabi, Artin ; Van Lew, Jon ; Zakin, Lise ; Rodriguez, Noe ; Sixto, Marcos ; Tadros, Wael ; Lazar, Adam ; Sieling, Peter A. ; Nguyen, Thang L. ; Dawson, Emma R. ; Braas, Daniel ; Golovato, Justin ; Cisneros, Luis ; Vaske, Charles ; Plath, Kathrin ; Rabizadeh, Shahrooz ; Niazi, Kayvan R. ; Chiou, Pei-Yu ; Teitell, Michael A.</creatorcontrib><description>Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch “pipeline” enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
[Display omitted]
•We report a “proof-of-principle” mitochondrial transfer pipeline by MitoPunch•MitoPunch generates cells with unique mtDNA-nDNA pairs, regardless of cell source•Replacement mtDNA in non-immortal cells remains stable with cell fate conversions•Enables studies of mtDNA-nDNA interactions with reprogramming and differentiation
Patananan and colleagues demonstrate a pipeline for transferring isolated mitochondria into mtDNA-deficient recipient cells. mtDNA-depleted fibroblasts permanently retain acquired non-native mtDNA through cell fate transitions. Initially, mitochondrial recipients show mtDNA-deficient cell transcriptome and metabolome profiles, with improvement to control profiles by reprogramming to pluripotency and subsequent differentiation.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.108562</identifier><identifier>PMID: 33378680</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell engineering ; differentiation, MitoPunch, mitochondrial transplantation, mitochondrial replacement, mitonuclear communication, isolated mitochondria ; mitochondrial transfer ; mtDNA ; reprogramming</subject><ispartof>Cell reports (Cambridge), 2020-12, Vol.33 (13), p.108562-108562, Article 108562</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-df35e7547cdb9f04204c5823bd7df5ef99f6abeb482d0333d8124e5d1137067a3</citedby><cites>FETCH-LOGICAL-c463t-df35e7547cdb9f04204c5823bd7df5ef99f6abeb482d0333d8124e5d1137067a3</cites><orcidid>0000-0003-1137-6874 ; 0000-0001-8703-2803 ; 0000-0002-7098-1751 ; 0000-0001-7796-3372 ; 0000-0001-6913-9607 ; 0000-0003-2176-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33378680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patananan, Alexander N.</creatorcontrib><creatorcontrib>Sercel, Alexander J.</creatorcontrib><creatorcontrib>Wu, Ting-Hsiang</creatorcontrib><creatorcontrib>Ahsan, Fasih M.</creatorcontrib><creatorcontrib>Torres, Alejandro</creatorcontrib><creatorcontrib>Kennedy, Stephanie A.L.</creatorcontrib><creatorcontrib>Vandiver, Amy</creatorcontrib><creatorcontrib>Collier, Amanda J.</creatorcontrib><creatorcontrib>Mehrabi, Artin</creatorcontrib><creatorcontrib>Van Lew, Jon</creatorcontrib><creatorcontrib>Zakin, Lise</creatorcontrib><creatorcontrib>Rodriguez, Noe</creatorcontrib><creatorcontrib>Sixto, Marcos</creatorcontrib><creatorcontrib>Tadros, Wael</creatorcontrib><creatorcontrib>Lazar, Adam</creatorcontrib><creatorcontrib>Sieling, Peter A.</creatorcontrib><creatorcontrib>Nguyen, Thang L.</creatorcontrib><creatorcontrib>Dawson, Emma R.</creatorcontrib><creatorcontrib>Braas, Daniel</creatorcontrib><creatorcontrib>Golovato, Justin</creatorcontrib><creatorcontrib>Cisneros, Luis</creatorcontrib><creatorcontrib>Vaske, Charles</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Rabizadeh, Shahrooz</creatorcontrib><creatorcontrib>Niazi, Kayvan R.</creatorcontrib><creatorcontrib>Chiou, Pei-Yu</creatorcontrib><creatorcontrib>Teitell, Michael A.</creatorcontrib><title>Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch “pipeline” enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
[Display omitted]
•We report a “proof-of-principle” mitochondrial transfer pipeline by MitoPunch•MitoPunch generates cells with unique mtDNA-nDNA pairs, regardless of cell source•Replacement mtDNA in non-immortal cells remains stable with cell fate conversions•Enables studies of mtDNA-nDNA interactions with reprogramming and differentiation
Patananan and colleagues demonstrate a pipeline for transferring isolated mitochondria into mtDNA-deficient recipient cells. mtDNA-depleted fibroblasts permanently retain acquired non-native mtDNA through cell fate transitions. Initially, mitochondrial recipients show mtDNA-deficient cell transcriptome and metabolome profiles, with improvement to control profiles by reprogramming to pluripotency and subsequent differentiation.</description><subject>cell engineering</subject><subject>differentiation, MitoPunch, mitochondrial transplantation, mitochondrial replacement, mitonuclear communication, isolated mitochondria</subject><subject>mitochondrial transfer</subject><subject>mtDNA</subject><subject>reprogramming</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UUFvFCEYJUZjm9p_YAxHL7MCwwwzFxOztdWkjT3UM2Hgw7JhYOWb3aT_XtattV7kAoH33sd7j5C3nK044_2HzcpCLLBdCSYOV0PXixfkVAjOGy6kevnsfELOETesrp5xPsrX5KRtWzX0AzsleFsAcVeguShhD4nehCXb-5xcCSbSu2ISeij0NmwhhgT0ChIUswDSGzPPJgaT6BpiRJo9vQAMBdxv0BIsXed5CsksISekJjl6eWC-Ia-8iQjnj_sZ-X75-W79pbn-dvV1_em6sbJvl8b5tgPVSWXdNHomBZO2G0Q7OeV8B34cfW8mmOQgHKuO3FDdQuc4bxXrlWnPyMej7nY3zeAspKWYqLclzKY86GyC_vclhXv9I--1GoXiXV8F3j8KlPxzB7joOWANPpoEeYe6hivlODAhKlQeobZkxAL-aQxn-lCZ3uhjZfpQmT5WVmnvnn_xifSnoL8eoAa1D1A02gDJgqtB20W7HP4_4Rdxvqud</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Patananan, Alexander N.</creator><creator>Sercel, Alexander J.</creator><creator>Wu, Ting-Hsiang</creator><creator>Ahsan, Fasih M.</creator><creator>Torres, Alejandro</creator><creator>Kennedy, Stephanie A.L.</creator><creator>Vandiver, Amy</creator><creator>Collier, Amanda J.</creator><creator>Mehrabi, Artin</creator><creator>Van Lew, Jon</creator><creator>Zakin, Lise</creator><creator>Rodriguez, Noe</creator><creator>Sixto, Marcos</creator><creator>Tadros, Wael</creator><creator>Lazar, Adam</creator><creator>Sieling, Peter A.</creator><creator>Nguyen, Thang L.</creator><creator>Dawson, Emma R.</creator><creator>Braas, Daniel</creator><creator>Golovato, Justin</creator><creator>Cisneros, Luis</creator><creator>Vaske, Charles</creator><creator>Plath, Kathrin</creator><creator>Rabizadeh, Shahrooz</creator><creator>Niazi, Kayvan R.</creator><creator>Chiou, Pei-Yu</creator><creator>Teitell, Michael A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1137-6874</orcidid><orcidid>https://orcid.org/0000-0001-8703-2803</orcidid><orcidid>https://orcid.org/0000-0002-7098-1751</orcidid><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0001-6913-9607</orcidid><orcidid>https://orcid.org/0000-0003-2176-9161</orcidid></search><sort><creationdate>20201229</creationdate><title>Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates</title><author>Patananan, Alexander N. ; Sercel, Alexander J. ; Wu, Ting-Hsiang ; Ahsan, Fasih M. ; Torres, Alejandro ; Kennedy, Stephanie A.L. ; Vandiver, Amy ; Collier, Amanda J. ; Mehrabi, Artin ; Van Lew, Jon ; Zakin, Lise ; Rodriguez, Noe ; Sixto, Marcos ; Tadros, Wael ; Lazar, Adam ; Sieling, Peter A. ; Nguyen, Thang L. ; Dawson, Emma R. ; Braas, Daniel ; Golovato, Justin ; Cisneros, Luis ; Vaske, Charles ; Plath, Kathrin ; Rabizadeh, Shahrooz ; Niazi, Kayvan R. ; Chiou, Pei-Yu ; Teitell, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-df35e7547cdb9f04204c5823bd7df5ef99f6abeb482d0333d8124e5d1137067a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell engineering</topic><topic>differentiation, MitoPunch, mitochondrial transplantation, mitochondrial replacement, mitonuclear communication, isolated mitochondria</topic><topic>mitochondrial transfer</topic><topic>mtDNA</topic><topic>reprogramming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patananan, Alexander N.</creatorcontrib><creatorcontrib>Sercel, Alexander J.</creatorcontrib><creatorcontrib>Wu, Ting-Hsiang</creatorcontrib><creatorcontrib>Ahsan, Fasih M.</creatorcontrib><creatorcontrib>Torres, Alejandro</creatorcontrib><creatorcontrib>Kennedy, Stephanie A.L.</creatorcontrib><creatorcontrib>Vandiver, Amy</creatorcontrib><creatorcontrib>Collier, Amanda J.</creatorcontrib><creatorcontrib>Mehrabi, Artin</creatorcontrib><creatorcontrib>Van Lew, Jon</creatorcontrib><creatorcontrib>Zakin, Lise</creatorcontrib><creatorcontrib>Rodriguez, Noe</creatorcontrib><creatorcontrib>Sixto, Marcos</creatorcontrib><creatorcontrib>Tadros, Wael</creatorcontrib><creatorcontrib>Lazar, Adam</creatorcontrib><creatorcontrib>Sieling, Peter A.</creatorcontrib><creatorcontrib>Nguyen, Thang L.</creatorcontrib><creatorcontrib>Dawson, Emma R.</creatorcontrib><creatorcontrib>Braas, Daniel</creatorcontrib><creatorcontrib>Golovato, Justin</creatorcontrib><creatorcontrib>Cisneros, Luis</creatorcontrib><creatorcontrib>Vaske, Charles</creatorcontrib><creatorcontrib>Plath, Kathrin</creatorcontrib><creatorcontrib>Rabizadeh, Shahrooz</creatorcontrib><creatorcontrib>Niazi, Kayvan R.</creatorcontrib><creatorcontrib>Chiou, Pei-Yu</creatorcontrib><creatorcontrib>Teitell, Michael A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patananan, Alexander N.</au><au>Sercel, Alexander J.</au><au>Wu, Ting-Hsiang</au><au>Ahsan, Fasih M.</au><au>Torres, Alejandro</au><au>Kennedy, Stephanie A.L.</au><au>Vandiver, Amy</au><au>Collier, Amanda J.</au><au>Mehrabi, Artin</au><au>Van Lew, Jon</au><au>Zakin, Lise</au><au>Rodriguez, Noe</au><au>Sixto, Marcos</au><au>Tadros, Wael</au><au>Lazar, Adam</au><au>Sieling, Peter A.</au><au>Nguyen, Thang L.</au><au>Dawson, Emma R.</au><au>Braas, Daniel</au><au>Golovato, Justin</au><au>Cisneros, Luis</au><au>Vaske, Charles</au><au>Plath, Kathrin</au><au>Rabizadeh, Shahrooz</au><au>Niazi, Kayvan R.</au><au>Chiou, Pei-Yu</au><au>Teitell, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-12-29</date><risdate>2020</risdate><volume>33</volume><issue>13</issue><spage>108562</spage><epage>108562</epage><pages>108562-108562</pages><artnum>108562</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch “pipeline” enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
[Display omitted]
•We report a “proof-of-principle” mitochondrial transfer pipeline by MitoPunch•MitoPunch generates cells with unique mtDNA-nDNA pairs, regardless of cell source•Replacement mtDNA in non-immortal cells remains stable with cell fate conversions•Enables studies of mtDNA-nDNA interactions with reprogramming and differentiation
Patananan and colleagues demonstrate a pipeline for transferring isolated mitochondria into mtDNA-deficient recipient cells. mtDNA-depleted fibroblasts permanently retain acquired non-native mtDNA through cell fate transitions. Initially, mitochondrial recipients show mtDNA-deficient cell transcriptome and metabolome profiles, with improvement to control profiles by reprogramming to pluripotency and subsequent differentiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33378680</pmid><doi>10.1016/j.celrep.2020.108562</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1137-6874</orcidid><orcidid>https://orcid.org/0000-0001-8703-2803</orcidid><orcidid>https://orcid.org/0000-0002-7098-1751</orcidid><orcidid>https://orcid.org/0000-0001-7796-3372</orcidid><orcidid>https://orcid.org/0000-0001-6913-9607</orcidid><orcidid>https://orcid.org/0000-0003-2176-9161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2020-12, Vol.33 (13), p.108562-108562, Article 108562 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927156 |
source | DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | cell engineering differentiation, MitoPunch, mitochondrial transplantation, mitochondrial replacement, mitonuclear communication, isolated mitochondria mitochondrial transfer mtDNA reprogramming |
title | Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-Driven%20Mitochondrial%20Transfer%20Pipeline%20Generates%20Mammalian%20Cells%20of%20Desired%20Genetic%20Combinations%20and%20Fates&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Patananan,%20Alexander%20N.&rft.date=2020-12-29&rft.volume=33&rft.issue=13&rft.spage=108562&rft.epage=108562&rft.pages=108562-108562&rft.artnum=108562&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.108562&rft_dat=%3Cproquest_pubme%3E2474498022%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474498022&rft_id=info:pmid/33378680&rft_els_id=S2211124720315515&rfr_iscdi=true |