An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique

Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2021-02, Vol.48 (2), p.1951-1957
Hauptverfasser: Gasanov, Eugene V., Jędrychowska, Justyna, Pastor, Michal, Wiweger, Malgorzata, Methner, Axel, Korzh, Vladimir P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1957
container_issue 2
container_start_page 1951
container_title Molecular biology reports
container_volume 48
creator Gasanov, Eugene V.
Jędrychowska, Justyna
Pastor, Michal
Wiweger, Malgorzata
Methner, Axel
Korzh, Vladimir P.
description Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b , gdap1 , and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio .
doi_str_mv 10.1007/s11033-020-06125-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577745391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6262f0857502cf8f45604b3650109b0cb4b40823348a1241bc8594c40a4eed73</originalsourceid><addsrcrecordid>eNp9UV1rFDEUDVKxa_UP-CCBPsfefE0yL4WytFooKLX4GmYyd3ZTOsk2mS3or2_Wbau--HThnnPPOdxDyAcOnziAOSmcg5QMBDBouNDMviILro1kqjX2gCxAAmfKan5I3pZyCwCKG_2GHEqpLOfGLsiPs0jDtMnpAQc64bxOAx1TppuMPhSkK4xpQopDmENc0RDpL-xzN4ayptuyWy2vL79_u2bLrrR0Rr-O4X6L78jrsbsr-P5pHpGbi_Ob5Rd29fXz5fLsinll1Mwa0YgRrDYahB_tqHQDqpeNBg5tD75XvQIrdnE7LhTvvdWt8go6hTgYeURO97KbbT_h4DHOubtzmxymLv90qQvuXySGtVulB2daoetjqsDxk0BONXaZ3W3a5lgjO6GNMUrLlleW2LN8TqVkHF8cOLhdFW5fhatVuN9VOFuPPv6d7eXk-feVIPeEUqG4wvzH-z-yj16Fk3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577745391</pqid></control><display><type>article</type><title>An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gasanov, Eugene V. ; Jędrychowska, Justyna ; Pastor, Michal ; Wiweger, Malgorzata ; Methner, Axel ; Korzh, Vladimir P.</creator><creatorcontrib>Gasanov, Eugene V. ; Jędrychowska, Justyna ; Pastor, Michal ; Wiweger, Malgorzata ; Methner, Axel ; Korzh, Vladimir P.</creatorcontrib><description>Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b , gdap1 , and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio .</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-020-06125-8</identifier><identifier>PMID: 33481178</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Animals ; Biomedical and Life Sciences ; CRISPR ; CRISPR-Cas Systems ; Danio rerio ; Deletion mutant ; Gene Deletion ; Gene Editing - methods ; Genome editing ; Genomes ; gRNA ; Heterozygote ; Histology ; Life Sciences ; Morphology ; Mutagenesis ; Mutation ; Nerve Tissue Proteins - genetics ; Non-homologous end joining ; Nuclease ; Nucleic Acid Denaturation ; Nucleotide sequence ; Nucleotides ; RNA, Guide, CRISPR-Cas Systems - genetics ; Short Communication ; Voltage-Dependent Anion Channels - genetics ; Zebrafish - genetics ; Zebrafish Proteins - genetics</subject><ispartof>Molecular biology reports, 2021-02, Vol.48 (2), p.1951-1957</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6262f0857502cf8f45604b3650109b0cb4b40823348a1241bc8594c40a4eed73</citedby><cites>FETCH-LOGICAL-c474t-6262f0857502cf8f45604b3650109b0cb4b40823348a1241bc8594c40a4eed73</cites><orcidid>0000-0002-5020-9406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-020-06125-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-020-06125-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasanov, Eugene V.</creatorcontrib><creatorcontrib>Jędrychowska, Justyna</creatorcontrib><creatorcontrib>Pastor, Michal</creatorcontrib><creatorcontrib>Wiweger, Malgorzata</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><creatorcontrib>Korzh, Vladimir P.</creatorcontrib><title>An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b , gdap1 , and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio .</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Danio rerio</subject><subject>Deletion mutant</subject><subject>Gene Deletion</subject><subject>Gene Editing - methods</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>gRNA</subject><subject>Heterozygote</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Non-homologous end joining</subject><subject>Nuclease</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Short Communication</subject><subject>Voltage-Dependent Anion Channels - genetics</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UV1rFDEUDVKxa_UP-CCBPsfefE0yL4WytFooKLX4GmYyd3ZTOsk2mS3or2_Wbau--HThnnPPOdxDyAcOnziAOSmcg5QMBDBouNDMviILro1kqjX2gCxAAmfKan5I3pZyCwCKG_2GHEqpLOfGLsiPs0jDtMnpAQc64bxOAx1TppuMPhSkK4xpQopDmENc0RDpL-xzN4ayptuyWy2vL79_u2bLrrR0Rr-O4X6L78jrsbsr-P5pHpGbi_Ob5Rd29fXz5fLsinll1Mwa0YgRrDYahB_tqHQDqpeNBg5tD75XvQIrdnE7LhTvvdWt8go6hTgYeURO97KbbT_h4DHOubtzmxymLv90qQvuXySGtVulB2daoetjqsDxk0BONXaZ3W3a5lgjO6GNMUrLlleW2LN8TqVkHF8cOLhdFW5fhatVuN9VOFuPPv6d7eXk-feVIPeEUqG4wvzH-z-yj16Fk3Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Gasanov, Eugene V.</creator><creator>Jędrychowska, Justyna</creator><creator>Pastor, Michal</creator><creator>Wiweger, Malgorzata</creator><creator>Methner, Axel</creator><creator>Korzh, Vladimir P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5020-9406</orcidid></search><sort><creationdate>20210201</creationdate><title>An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique</title><author>Gasanov, Eugene V. ; Jędrychowska, Justyna ; Pastor, Michal ; Wiweger, Malgorzata ; Methner, Axel ; Korzh, Vladimir P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6262f0857502cf8f45604b3650109b0cb4b40823348a1241bc8594c40a4eed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Danio rerio</topic><topic>Deletion mutant</topic><topic>Gene Deletion</topic><topic>Gene Editing - methods</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>gRNA</topic><topic>Heterozygote</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Non-homologous end joining</topic><topic>Nuclease</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Short Communication</topic><topic>Voltage-Dependent Anion Channels - genetics</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasanov, Eugene V.</creatorcontrib><creatorcontrib>Jędrychowska, Justyna</creatorcontrib><creatorcontrib>Pastor, Michal</creatorcontrib><creatorcontrib>Wiweger, Malgorzata</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><creatorcontrib>Korzh, Vladimir P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasanov, Eugene V.</au><au>Jędrychowska, Justyna</au><au>Pastor, Michal</au><au>Wiweger, Malgorzata</au><au>Methner, Axel</au><au>Korzh, Vladimir P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>48</volume><issue>2</issue><spage>1951</spage><epage>1957</epage><pages>1951-1957</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b , gdap1 , and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33481178</pmid><doi>10.1007/s11033-020-06125-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5020-9406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2021-02, Vol.48 (2), p.1951-1957
issn 0301-4851
1573-4978
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925485
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animal Anatomy
Animal Biochemistry
Animals
Biomedical and Life Sciences
CRISPR
CRISPR-Cas Systems
Danio rerio
Deletion mutant
Gene Deletion
Gene Editing - methods
Genome editing
Genomes
gRNA
Heterozygote
Histology
Life Sciences
Morphology
Mutagenesis
Mutation
Nerve Tissue Proteins - genetics
Non-homologous end joining
Nuclease
Nucleic Acid Denaturation
Nucleotide sequence
Nucleotides
RNA, Guide, CRISPR-Cas Systems - genetics
Short Communication
Voltage-Dependent Anion Channels - genetics
Zebrafish - genetics
Zebrafish Proteins - genetics
title An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20method%20for%20precise%20genome%20editing%20in%20zebrafish%20using%20CRISPR-Cas9%20technique&rft.jtitle=Molecular%20biology%20reports&rft.au=Gasanov,%20Eugene%20V.&rft.date=2021-02-01&rft.volume=48&rft.issue=2&rft.spage=1951&rft.epage=1957&rft.pages=1951-1957&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-020-06125-8&rft_dat=%3Cproquest_pubme%3E2577745391%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577745391&rft_id=info:pmid/33481178&rfr_iscdi=true