Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus
Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2020-11, Vol.94 (24) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of virology |
container_volume | 94 |
creator | Ortega-Esteban, Álvaro Mata, Carlos P Rodríguez-Espinosa, María J Luque, Daniel Irigoyen, Nerea Rodríguez, Javier M de Pablo, Pedro J Castón, José R |
description | Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an
reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.
Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanoca |
doi_str_mv | 10.1128/JVI.01542-20 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443880018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</originalsourceid><addsrcrecordid>eNpVkc1P3DAUxC1UVLbQG-fKxx424M_EuSChFRQqVkUCqt4s23lhXSX2Yidb7X_fLFBET-_wRr8ZzSB0TMkJpUydfv95fUKoFKxgZA_NKKlVISUVH9CMEMYKydWvA_Qp59-EUCFK8REdcFZzVZV8hoZF2sYCOnBDigEvvUsxu7je4rshjW4YE8zxec7Q2247xyY0eAluZYJ3Gd-t4h-8jGm9io8QIPv8LLjYxG4c_ISLLb4aexPwrXfR-hTMxqcxH6H91nQZPr_eQ_RweXG_uCpufny7XpzfFI4rMRSSlY2ESlIrqpoo21JWWym5dGBLbqFppBJNyyquVE2FqsAyx41tG15zWRJ-iM5euOvR9tA4CEMynV4n35u01dF4_f8n-JV-jBtd1UzSik-Ar6-AFJ9GyIPufXbQdSZAHLNmQkzeU69qks5fpLsCc4L2zYYSvRtKT0Pp56E020X78j7am_jfMvwva3uRAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443880018</pqid></control><display><type>article</type><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R</creator><contributor>López, Susana</contributor><creatorcontrib>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R ; López, Susana</creatorcontrib><description>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an
reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.
Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.01542-20</identifier><identifier>PMID: 32938763</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Capsid - metabolism ; Capsid - ultrastructure ; Capsid Proteins - chemistry ; Capsid Proteins - genetics ; Cryoelectron Microscopy - methods ; Genome, Viral ; Humans ; Models, Molecular ; Picobirnavirus - genetics ; Picobirnavirus - metabolism ; Protein Conformation ; Protein Conformation, alpha-Helical ; Protein Domains ; RNA, Double-Stranded ; Structure and Assembly ; Virion - ultrastructure ; Virus Assembly</subject><ispartof>Journal of virology, 2020-11, Vol.94 (24)</ispartof><rights>Copyright © 2020 American Society for Microbiology.</rights><rights>Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</citedby><cites>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</cites><orcidid>0000-0003-2350-9048 ; 0000-0001-6346-3369 ; 0000-0003-2386-3186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925173/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925173/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32938763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>López, Susana</contributor><creatorcontrib>Ortega-Esteban, Álvaro</creatorcontrib><creatorcontrib>Mata, Carlos P</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, María J</creatorcontrib><creatorcontrib>Luque, Daniel</creatorcontrib><creatorcontrib>Irigoyen, Nerea</creatorcontrib><creatorcontrib>Rodríguez, Javier M</creatorcontrib><creatorcontrib>de Pablo, Pedro J</creatorcontrib><creatorcontrib>Castón, José R</creatorcontrib><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><title>Journal of virology</title><addtitle>J Virol</addtitle><description>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an
reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.
Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</description><subject>Capsid - metabolism</subject><subject>Capsid - ultrastructure</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - genetics</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Genome, Viral</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Picobirnavirus - genetics</subject><subject>Picobirnavirus - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Domains</subject><subject>RNA, Double-Stranded</subject><subject>Structure and Assembly</subject><subject>Virion - ultrastructure</subject><subject>Virus Assembly</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1P3DAUxC1UVLbQG-fKxx424M_EuSChFRQqVkUCqt4s23lhXSX2Yidb7X_fLFBET-_wRr8ZzSB0TMkJpUydfv95fUKoFKxgZA_NKKlVISUVH9CMEMYKydWvA_Qp59-EUCFK8REdcFZzVZV8hoZF2sYCOnBDigEvvUsxu7je4rshjW4YE8zxec7Q2247xyY0eAluZYJ3Gd-t4h-8jGm9io8QIPv8LLjYxG4c_ISLLb4aexPwrXfR-hTMxqcxH6H91nQZPr_eQ_RweXG_uCpufny7XpzfFI4rMRSSlY2ESlIrqpoo21JWWym5dGBLbqFppBJNyyquVE2FqsAyx41tG15zWRJ-iM5euOvR9tA4CEMynV4n35u01dF4_f8n-JV-jBtd1UzSik-Ar6-AFJ9GyIPufXbQdSZAHLNmQkzeU69qks5fpLsCc4L2zYYSvRtKT0Pp56E020X78j7am_jfMvwva3uRAQ</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Ortega-Esteban, Álvaro</creator><creator>Mata, Carlos P</creator><creator>Rodríguez-Espinosa, María J</creator><creator>Luque, Daniel</creator><creator>Irigoyen, Nerea</creator><creator>Rodríguez, Javier M</creator><creator>de Pablo, Pedro J</creator><creator>Castón, José R</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2350-9048</orcidid><orcidid>https://orcid.org/0000-0001-6346-3369</orcidid><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid></search><sort><creationdate>20201123</creationdate><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><author>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capsid - metabolism</topic><topic>Capsid - ultrastructure</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - genetics</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Genome, Viral</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Picobirnavirus - genetics</topic><topic>Picobirnavirus - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Domains</topic><topic>RNA, Double-Stranded</topic><topic>Structure and Assembly</topic><topic>Virion - ultrastructure</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Esteban, Álvaro</creatorcontrib><creatorcontrib>Mata, Carlos P</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, María J</creatorcontrib><creatorcontrib>Luque, Daniel</creatorcontrib><creatorcontrib>Irigoyen, Nerea</creatorcontrib><creatorcontrib>Rodríguez, Javier M</creatorcontrib><creatorcontrib>de Pablo, Pedro J</creatorcontrib><creatorcontrib>Castón, José R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Esteban, Álvaro</au><au>Mata, Carlos P</au><au>Rodríguez-Espinosa, María J</au><au>Luque, Daniel</au><au>Irigoyen, Nerea</au><au>Rodríguez, Javier M</au><au>de Pablo, Pedro J</au><au>Castón, José R</au><au>López, Susana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</atitle><jtitle>Journal of virology</jtitle><addtitle>J Virol</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>94</volume><issue>24</issue><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an
reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.
Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>32938763</pmid><doi>10.1128/JVI.01542-20</doi><orcidid>https://orcid.org/0000-0003-2350-9048</orcidid><orcidid>https://orcid.org/0000-0001-6346-3369</orcidid><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-538X |
ispartof | Journal of virology, 2020-11, Vol.94 (24) |
issn | 0022-538X 1098-5514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925173 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Capsid - metabolism Capsid - ultrastructure Capsid Proteins - chemistry Capsid Proteins - genetics Cryoelectron Microscopy - methods Genome, Viral Humans Models, Molecular Picobirnavirus - genetics Picobirnavirus - metabolism Protein Conformation Protein Conformation, alpha-Helical Protein Domains RNA, Double-Stranded Structure and Assembly Virion - ultrastructure Virus Assembly |
title | Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-electron%20Microscopy%20Structure,%20Assembly,%20and%20Mechanics%20Show%20Morphogenesis%20and%20Evolution%20of%20Human%20Picobirnavirus&rft.jtitle=Journal%20of%20virology&rft.au=Ortega-Esteban,%20%C3%81lvaro&rft.date=2020-11-23&rft.volume=94&rft.issue=24&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.01542-20&rft_dat=%3Cproquest_pubme%3E2443880018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443880018&rft_id=info:pmid/32938763&rfr_iscdi=true |