Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus

Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virology 2020-11, Vol.94 (24)
Hauptverfasser: Ortega-Esteban, Álvaro, Mata, Carlos P, Rodríguez-Espinosa, María J, Luque, Daniel, Irigoyen, Nerea, Rodríguez, Javier M, de Pablo, Pedro J, Castón, José R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of virology
container_volume 94
creator Ortega-Esteban, Álvaro
Mata, Carlos P
Rodríguez-Espinosa, María J
Luque, Daniel
Irigoyen, Nerea
Rodríguez, Javier M
de Pablo, Pedro J
Castón, José R
description Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo. Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanoca
doi_str_mv 10.1128/JVI.01542-20
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443880018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</originalsourceid><addsrcrecordid>eNpVkc1P3DAUxC1UVLbQG-fKxx424M_EuSChFRQqVkUCqt4s23lhXSX2Yidb7X_fLFBET-_wRr8ZzSB0TMkJpUydfv95fUKoFKxgZA_NKKlVISUVH9CMEMYKydWvA_Qp59-EUCFK8REdcFZzVZV8hoZF2sYCOnBDigEvvUsxu7je4rshjW4YE8zxec7Q2247xyY0eAluZYJ3Gd-t4h-8jGm9io8QIPv8LLjYxG4c_ISLLb4aexPwrXfR-hTMxqcxH6H91nQZPr_eQ_RweXG_uCpufny7XpzfFI4rMRSSlY2ESlIrqpoo21JWWym5dGBLbqFppBJNyyquVE2FqsAyx41tG15zWRJ-iM5euOvR9tA4CEMynV4n35u01dF4_f8n-JV-jBtd1UzSik-Ar6-AFJ9GyIPufXbQdSZAHLNmQkzeU69qks5fpLsCc4L2zYYSvRtKT0Pp56E020X78j7am_jfMvwva3uRAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443880018</pqid></control><display><type>article</type><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R</creator><contributor>López, Susana</contributor><creatorcontrib>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R ; López, Susana</creatorcontrib><description>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo. Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.01542-20</identifier><identifier>PMID: 32938763</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Capsid - metabolism ; Capsid - ultrastructure ; Capsid Proteins - chemistry ; Capsid Proteins - genetics ; Cryoelectron Microscopy - methods ; Genome, Viral ; Humans ; Models, Molecular ; Picobirnavirus - genetics ; Picobirnavirus - metabolism ; Protein Conformation ; Protein Conformation, alpha-Helical ; Protein Domains ; RNA, Double-Stranded ; Structure and Assembly ; Virion - ultrastructure ; Virus Assembly</subject><ispartof>Journal of virology, 2020-11, Vol.94 (24)</ispartof><rights>Copyright © 2020 American Society for Microbiology.</rights><rights>Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</citedby><cites>FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</cites><orcidid>0000-0003-2350-9048 ; 0000-0001-6346-3369 ; 0000-0003-2386-3186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925173/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925173/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32938763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>López, Susana</contributor><creatorcontrib>Ortega-Esteban, Álvaro</creatorcontrib><creatorcontrib>Mata, Carlos P</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, María J</creatorcontrib><creatorcontrib>Luque, Daniel</creatorcontrib><creatorcontrib>Irigoyen, Nerea</creatorcontrib><creatorcontrib>Rodríguez, Javier M</creatorcontrib><creatorcontrib>de Pablo, Pedro J</creatorcontrib><creatorcontrib>Castón, José R</creatorcontrib><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><title>Journal of virology</title><addtitle>J Virol</addtitle><description>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo. Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</description><subject>Capsid - metabolism</subject><subject>Capsid - ultrastructure</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - genetics</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Genome, Viral</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Picobirnavirus - genetics</subject><subject>Picobirnavirus - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Domains</subject><subject>RNA, Double-Stranded</subject><subject>Structure and Assembly</subject><subject>Virion - ultrastructure</subject><subject>Virus Assembly</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1P3DAUxC1UVLbQG-fKxx424M_EuSChFRQqVkUCqt4s23lhXSX2Yidb7X_fLFBET-_wRr8ZzSB0TMkJpUydfv95fUKoFKxgZA_NKKlVISUVH9CMEMYKydWvA_Qp59-EUCFK8REdcFZzVZV8hoZF2sYCOnBDigEvvUsxu7je4rshjW4YE8zxec7Q2247xyY0eAluZYJ3Gd-t4h-8jGm9io8QIPv8LLjYxG4c_ISLLb4aexPwrXfR-hTMxqcxH6H91nQZPr_eQ_RweXG_uCpufny7XpzfFI4rMRSSlY2ESlIrqpoo21JWWym5dGBLbqFppBJNyyquVE2FqsAyx41tG15zWRJ-iM5euOvR9tA4CEMynV4n35u01dF4_f8n-JV-jBtd1UzSik-Ar6-AFJ9GyIPufXbQdSZAHLNmQkzeU69qks5fpLsCc4L2zYYSvRtKT0Pp56E020X78j7am_jfMvwva3uRAQ</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Ortega-Esteban, Álvaro</creator><creator>Mata, Carlos P</creator><creator>Rodríguez-Espinosa, María J</creator><creator>Luque, Daniel</creator><creator>Irigoyen, Nerea</creator><creator>Rodríguez, Javier M</creator><creator>de Pablo, Pedro J</creator><creator>Castón, José R</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2350-9048</orcidid><orcidid>https://orcid.org/0000-0001-6346-3369</orcidid><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid></search><sort><creationdate>20201123</creationdate><title>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</title><author>Ortega-Esteban, Álvaro ; Mata, Carlos P ; Rodríguez-Espinosa, María J ; Luque, Daniel ; Irigoyen, Nerea ; Rodríguez, Javier M ; de Pablo, Pedro J ; Castón, José R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-526d5e751b47908bf129b5535ceb63bedd584df2738891487eb2c3abfd3935603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capsid - metabolism</topic><topic>Capsid - ultrastructure</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - genetics</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Genome, Viral</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Picobirnavirus - genetics</topic><topic>Picobirnavirus - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Domains</topic><topic>RNA, Double-Stranded</topic><topic>Structure and Assembly</topic><topic>Virion - ultrastructure</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Esteban, Álvaro</creatorcontrib><creatorcontrib>Mata, Carlos P</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, María J</creatorcontrib><creatorcontrib>Luque, Daniel</creatorcontrib><creatorcontrib>Irigoyen, Nerea</creatorcontrib><creatorcontrib>Rodríguez, Javier M</creatorcontrib><creatorcontrib>de Pablo, Pedro J</creatorcontrib><creatorcontrib>Castón, José R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Esteban, Álvaro</au><au>Mata, Carlos P</au><au>Rodríguez-Espinosa, María J</au><au>Luque, Daniel</au><au>Irigoyen, Nerea</au><au>Rodríguez, Javier M</au><au>de Pablo, Pedro J</au><au>Castón, José R</au><au>López, Susana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus</atitle><jtitle>Journal of virology</jtitle><addtitle>J Virol</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>94</volume><issue>24</issue><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo. Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>32938763</pmid><doi>10.1128/JVI.01542-20</doi><orcidid>https://orcid.org/0000-0003-2350-9048</orcidid><orcidid>https://orcid.org/0000-0001-6346-3369</orcidid><orcidid>https://orcid.org/0000-0003-2386-3186</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-538X
ispartof Journal of virology, 2020-11, Vol.94 (24)
issn 0022-538X
1098-5514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925173
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Capsid - metabolism
Capsid - ultrastructure
Capsid Proteins - chemistry
Capsid Proteins - genetics
Cryoelectron Microscopy - methods
Genome, Viral
Humans
Models, Molecular
Picobirnavirus - genetics
Picobirnavirus - metabolism
Protein Conformation
Protein Conformation, alpha-Helical
Protein Domains
RNA, Double-Stranded
Structure and Assembly
Virion - ultrastructure
Virus Assembly
title Cryo-electron Microscopy Structure, Assembly, and Mechanics Show Morphogenesis and Evolution of Human Picobirnavirus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-electron%20Microscopy%20Structure,%20Assembly,%20and%20Mechanics%20Show%20Morphogenesis%20and%20Evolution%20of%20Human%20Picobirnavirus&rft.jtitle=Journal%20of%20virology&rft.au=Ortega-Esteban,%20%C3%81lvaro&rft.date=2020-11-23&rft.volume=94&rft.issue=24&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.01542-20&rft_dat=%3Cproquest_pubme%3E2443880018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443880018&rft_id=info:pmid/32938763&rfr_iscdi=true