Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study
Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecti...
Gespeichert in:
Veröffentlicht in: | IEEE journal of translational engineering in health and medicine 2021-01, Vol.9, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of translational engineering in health and medicine |
container_volume | 9 |
creator | Lonini, Luca Shawen, Nicholas Botonis, Olivia Fanton, Michael Jayaraman, Chadrasekaran Mummidisetty, Chaithanya Krishna Shin, Sung Yul Rushin, Claire Jenz, Sophia Xu, Shuai Rogers, John A. Jayaraman, Arun |
description | Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. "snapshot"), to detect symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds. Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals (n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm may be a promising approach for non-invasive and repeatable testing to alert individuals that need further screening. |
doi_str_mv | 10.1109/JTEHM.2021.3058841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9352760</ieee_id><doaj_id>oai_doaj_org_article_62b95ff5d5754d06b48a5b7061f16cfe</doaj_id><sourcerecordid>2498672174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5ebf105cee336f9c3f081282cf9c320ac533875102ce295c29879aa1b69276853</originalsourceid><addsrcrecordid>eNpVUltv2yAURtOmtcr6BzZpsrRnp1wMhj1MirJuzdSp1dqujwhjcIhckwKulKf99ZImi1peOOK7cA58AHxEcIoQFKe_bs7Of08xxGhKIOW8Qm_AMUaMl5jU-O2L-gicxLiCeXHEBBbvwREhjFFYVcfg3x-1dm1xrYMxgxu6wtviarmJzve-c1r1xXyphs7EYhaj104l0xZ3Li2L-eXfxfcSieI2bnXX3qbyzqigmj6z1ZBNUxh1GkNWzHRyjy45E78Ws-LK9T5leGw3H8A7q_poTvb7BNz-OLuZn5cXlz8X89lFqSliqaSmsQhSbUxu3QpNbB4Gc6y3NYZKU0J4TRHE2mBBNRa8FkqhJg9cM07JBCx2vq1XK7kO7l6FjfTKyecDHzqpQnK6N5LhRlBraUtrWrWQNRVXtKkhQxYxbU32-rbzWo_NvWm1GVJQ_SvT18jglrLzj7IWuGK50wn4sjcI_mE0McmVH8OQ55e4EpzVGNVVZuEdSwcfYzD2cAOCcpsB-ZwBuc2A3Gcgiz6_7O0g-f_jmfBpR3DGmAMsCM3vBMkTTRe1Tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672174</pqid></control><display><type>article</type><title>Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study</title><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Lonini, Luca ; Shawen, Nicholas ; Botonis, Olivia ; Fanton, Michael ; Jayaraman, Chadrasekaran ; Mummidisetty, Chaithanya Krishna ; Shin, Sung Yul ; Rushin, Claire ; Jenz, Sophia ; Xu, Shuai ; Rogers, John A. ; Jayaraman, Arun</creator><creatorcontrib>Lonini, Luca ; Shawen, Nicholas ; Botonis, Olivia ; Fanton, Michael ; Jayaraman, Chadrasekaran ; Mummidisetty, Chaithanya Krishna ; Shin, Sung Yul ; Rushin, Claire ; Jenz, Sophia ; Xu, Shuai ; Rogers, John A. ; Jayaraman, Arun</creatorcontrib><description>Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. "snapshot"), to detect symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds. Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals (n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm may be a promising approach for non-invasive and repeatable testing to alert individuals that need further screening.</description><identifier>ISSN: 2168-2372</identifier><identifier>EISSN: 2168-2372</identifier><identifier>DOI: 10.1109/JTEHM.2021.3058841</identifier><identifier>PMID: 33665044</identifier><identifier>CODEN: IJTEBN</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Adult ; Aged ; Area Under Curve ; Biomedical monitoring ; Case-Control Studies ; Coronaviruses ; Cough ; Cough - diagnosis ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - physiopathology ; diagnostics ; digital health ; Disease control ; Exercise ; Female ; Frequency spectrum ; Heart Rate ; Humans ; Legged locomotion ; Male ; Middle Aged ; Monitoring, Physiologic - instrumentation ; Monitoring, Physiologic - methods ; Physiological responses ; Physiology ; Pilot Projects ; Quarantine ; Respiration ; Screening ; soft electronics ; Testing ; Walking ; Wearable computers ; Wearable Electronic Devices ; wearable sensors</subject><ispartof>IEEE journal of translational engineering in health and medicine, 2021-01, Vol.9, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-5ebf105cee336f9c3f081282cf9c320ac533875102ce295c29879aa1b69276853</citedby><cites>FETCH-LOGICAL-c516t-5ebf105cee336f9c3f081282cf9c320ac533875102ce295c29879aa1b69276853</cites><orcidid>0000-0002-9358-1718 ; 0000-0003-2625-7026 ; 0000-0002-3210-8417 ; 0000-0002-9302-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924653/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9352760$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27612,27903,27904,53769,53771,54911</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33665044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lonini, Luca</creatorcontrib><creatorcontrib>Shawen, Nicholas</creatorcontrib><creatorcontrib>Botonis, Olivia</creatorcontrib><creatorcontrib>Fanton, Michael</creatorcontrib><creatorcontrib>Jayaraman, Chadrasekaran</creatorcontrib><creatorcontrib>Mummidisetty, Chaithanya Krishna</creatorcontrib><creatorcontrib>Shin, Sung Yul</creatorcontrib><creatorcontrib>Rushin, Claire</creatorcontrib><creatorcontrib>Jenz, Sophia</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Jayaraman, Arun</creatorcontrib><title>Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study</title><title>IEEE journal of translational engineering in health and medicine</title><addtitle>JTEHM</addtitle><addtitle>IEEE J Transl Eng Health Med</addtitle><description>Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. "snapshot"), to detect symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds. Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals (n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm may be a promising approach for non-invasive and repeatable testing to alert individuals that need further screening.</description><subject>Acoustics</subject><subject>Adult</subject><subject>Aged</subject><subject>Area Under Curve</subject><subject>Biomedical monitoring</subject><subject>Case-Control Studies</subject><subject>Coronaviruses</subject><subject>Cough</subject><subject>Cough - diagnosis</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - physiopathology</subject><subject>diagnostics</subject><subject>digital health</subject><subject>Disease control</subject><subject>Exercise</subject><subject>Female</subject><subject>Frequency spectrum</subject><subject>Heart Rate</subject><subject>Humans</subject><subject>Legged locomotion</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Monitoring, Physiologic - methods</subject><subject>Physiological responses</subject><subject>Physiology</subject><subject>Pilot Projects</subject><subject>Quarantine</subject><subject>Respiration</subject><subject>Screening</subject><subject>soft electronics</subject><subject>Testing</subject><subject>Walking</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>wearable sensors</subject><issn>2168-2372</issn><issn>2168-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUltv2yAURtOmtcr6BzZpsrRnp1wMhj1MirJuzdSp1dqujwhjcIhckwKulKf99ZImi1peOOK7cA58AHxEcIoQFKe_bs7Of08xxGhKIOW8Qm_AMUaMl5jU-O2L-gicxLiCeXHEBBbvwREhjFFYVcfg3x-1dm1xrYMxgxu6wtviarmJzve-c1r1xXyphs7EYhaj104l0xZ3Li2L-eXfxfcSieI2bnXX3qbyzqigmj6z1ZBNUxh1GkNWzHRyjy45E78Ws-LK9T5leGw3H8A7q_poTvb7BNz-OLuZn5cXlz8X89lFqSliqaSmsQhSbUxu3QpNbB4Gc6y3NYZKU0J4TRHE2mBBNRa8FkqhJg9cM07JBCx2vq1XK7kO7l6FjfTKyecDHzqpQnK6N5LhRlBraUtrWrWQNRVXtKkhQxYxbU32-rbzWo_NvWm1GVJQ_SvT18jglrLzj7IWuGK50wn4sjcI_mE0McmVH8OQ55e4EpzVGNVVZuEdSwcfYzD2cAOCcpsB-ZwBuc2A3Gcgiz6_7O0g-f_jmfBpR3DGmAMsCM3vBMkTTRe1Tg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lonini, Luca</creator><creator>Shawen, Nicholas</creator><creator>Botonis, Olivia</creator><creator>Fanton, Michael</creator><creator>Jayaraman, Chadrasekaran</creator><creator>Mummidisetty, Chaithanya Krishna</creator><creator>Shin, Sung Yul</creator><creator>Rushin, Claire</creator><creator>Jenz, Sophia</creator><creator>Xu, Shuai</creator><creator>Rogers, John A.</creator><creator>Jayaraman, Arun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9358-1718</orcidid><orcidid>https://orcid.org/0000-0003-2625-7026</orcidid><orcidid>https://orcid.org/0000-0002-3210-8417</orcidid><orcidid>https://orcid.org/0000-0002-9302-6693</orcidid></search><sort><creationdate>20210101</creationdate><title>Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study</title><author>Lonini, Luca ; Shawen, Nicholas ; Botonis, Olivia ; Fanton, Michael ; Jayaraman, Chadrasekaran ; Mummidisetty, Chaithanya Krishna ; Shin, Sung Yul ; Rushin, Claire ; Jenz, Sophia ; Xu, Shuai ; Rogers, John A. ; Jayaraman, Arun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5ebf105cee336f9c3f081282cf9c320ac533875102ce295c29879aa1b69276853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Adult</topic><topic>Aged</topic><topic>Area Under Curve</topic><topic>Biomedical monitoring</topic><topic>Case-Control Studies</topic><topic>Coronaviruses</topic><topic>Cough</topic><topic>Cough - diagnosis</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - physiopathology</topic><topic>diagnostics</topic><topic>digital health</topic><topic>Disease control</topic><topic>Exercise</topic><topic>Female</topic><topic>Frequency spectrum</topic><topic>Heart Rate</topic><topic>Humans</topic><topic>Legged locomotion</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Monitoring, Physiologic - methods</topic><topic>Physiological responses</topic><topic>Physiology</topic><topic>Pilot Projects</topic><topic>Quarantine</topic><topic>Respiration</topic><topic>Screening</topic><topic>soft electronics</topic><topic>Testing</topic><topic>Walking</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lonini, Luca</creatorcontrib><creatorcontrib>Shawen, Nicholas</creatorcontrib><creatorcontrib>Botonis, Olivia</creatorcontrib><creatorcontrib>Fanton, Michael</creatorcontrib><creatorcontrib>Jayaraman, Chadrasekaran</creatorcontrib><creatorcontrib>Mummidisetty, Chaithanya Krishna</creatorcontrib><creatorcontrib>Shin, Sung Yul</creatorcontrib><creatorcontrib>Rushin, Claire</creatorcontrib><creatorcontrib>Jenz, Sophia</creatorcontrib><creatorcontrib>Xu, Shuai</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Jayaraman, Arun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE journal of translational engineering in health and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lonini, Luca</au><au>Shawen, Nicholas</au><au>Botonis, Olivia</au><au>Fanton, Michael</au><au>Jayaraman, Chadrasekaran</au><au>Mummidisetty, Chaithanya Krishna</au><au>Shin, Sung Yul</au><au>Rushin, Claire</au><au>Jenz, Sophia</au><au>Xu, Shuai</au><au>Rogers, John A.</au><au>Jayaraman, Arun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study</atitle><jtitle>IEEE journal of translational engineering in health and medicine</jtitle><stitle>JTEHM</stitle><addtitle>IEEE J Transl Eng Health Med</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2372</issn><eissn>2168-2372</eissn><coden>IJTEBN</coden><abstract>Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. "snapshot"), to detect symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds. Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals (n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm may be a promising approach for non-invasive and repeatable testing to alert individuals that need further screening.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33665044</pmid><doi>10.1109/JTEHM.2021.3058841</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9358-1718</orcidid><orcidid>https://orcid.org/0000-0003-2625-7026</orcidid><orcidid>https://orcid.org/0000-0002-3210-8417</orcidid><orcidid>https://orcid.org/0000-0002-9302-6693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2372 |
ispartof | IEEE journal of translational engineering in health and medicine, 2021-01, Vol.9, p.1-11 |
issn | 2168-2372 2168-2372 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7924653 |
source | MEDLINE; PubMed Central; Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Acoustics Adult Aged Area Under Curve Biomedical monitoring Case-Control Studies Coronaviruses Cough Cough - diagnosis COVID-19 COVID-19 - diagnosis COVID-19 - physiopathology diagnostics digital health Disease control Exercise Female Frequency spectrum Heart Rate Humans Legged locomotion Male Middle Aged Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Physiological responses Physiology Pilot Projects Quarantine Respiration Screening soft electronics Testing Walking Wearable computers Wearable Electronic Devices wearable sensors |
title | Rapid Screening of Physiological Changes Associated With COVID-19 Using Soft-Wearables and Structured Activities: A Pilot Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Screening%20of%20Physiological%20Changes%20Associated%20With%20COVID-19%20Using%20Soft-Wearables%20and%20Structured%20Activities:%20A%20Pilot%20Study&rft.jtitle=IEEE%20journal%20of%20translational%20engineering%20in%20health%20and%20medicine&rft.au=Lonini,%20Luca&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2372&rft.eissn=2168-2372&rft.coden=IJTEBN&rft_id=info:doi/10.1109/JTEHM.2021.3058841&rft_dat=%3Cproquest_pubme%3E2498672174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672174&rft_id=info:pmid/33665044&rft_ieee_id=9352760&rft_doaj_id=oai_doaj_org_article_62b95ff5d5754d06b48a5b7061f16cfe&rfr_iscdi=true |