A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation

Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (8), p.1-10
Hauptverfasser: Bu, Tiantian, Lu, Sijia, Wang, Kai, Dong, Lidong, Li, Shilin, Xie, Qiguang, Xu, Xiaodong, Cheng, Qun, Chen, Liyu, Fang, Chao, Li, Haiyang, Liu, Baohui, Weller, James L., Kong, Fanjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 8
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Bu, Tiantian
Lu, Sijia
Wang, Kai
Dong, Lidong
Li, Shilin
Xie, Qiguang
Xu, Xiaodong
Cheng, Qun
Chen, Liyu
Fang, Chao
Li, Haiyang
Liu, Baohui
Weller, James L.
Kong, Fanjiang
description Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.
doi_str_mv 10.1073/pnas.2010241118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7923351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006341</jstor_id><sourcerecordid>27006341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERUNgzQpkiQ2baa8fM7Y3SFXFS6rUTbu2HNuTOJrYg-1E5N8zQ0p4rO7ifPfo3HsQekPgioBg12M05YoCAcoJIfIZWhBQpOm4gudoAUBFIznll-hlKVsAUK2EF-iSsbaVnHQLtL7BNocarBlwToPHqcd143FJx5U3EfuDjyGusU27cfA_cIi_ZJtinfCZHjepptHnkBwuPpbJ7BDqEZvosHFmrKaGFF-hi94Mxb9-mkv0-PnTw-3X5u7-y7fbm7vGtqBq03dSceikJY5Z3vbKcGW9ZUw5YqwzdCUE67iVPQXHvWek7ZwUKy6css4StkQfT77jfrXzzvoppxn0mMPO5KNOJuh_lRg2ep0OWig6fWU2-PBkkNP3vS9V70KxfhhM9GlfNOVSiBYolRP6_j90m_Y5TufNlARG6JR2ia5PlM2plOz7cxgCei5RzyXqPyVOG-_-vuHM_25tAt6egG2pKZ91KgA6xgn7CW61pCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488031277</pqid></control><display><type>article</type><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</creator><creatorcontrib>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</creatorcontrib><description>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2010241118</identifier><identifier>PMID: 33558416</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation ; Adaptation, Physiological ; Agricultural production ; Binding sites ; Biological Sciences ; Circadian rhythms ; Crop production ; Flowering ; Flowers - genetics ; Flowers - growth &amp; development ; Flowers - metabolism ; Flowers - radiation effects ; Gene Expression Regulation, Plant - radiation effects ; Genes ; Genetic modification ; Genome editing ; Glycine max - genetics ; Glycine max - growth &amp; development ; Glycine max - metabolism ; Glycine max - radiation effects ; Homology ; Mutants ; Mutation ; Phenotype ; Phenotypes ; Photoperiod ; Photoperiodicity ; Plant Breeding ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Sensitivity ; Soybeans ; Tobacco ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (8), p.1-10</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</citedby><cites>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</cites><orcidid>0000-0003-2423-8286 ; 0000-0002-3110-0915 ; 0000-0002-8853-8918 ; 0000-0002-6480-3078 ; 0000-0002-8085-1678 ; 0000-0001-5595-2058 ; 0000-0001-7138-1478 ; 0000-0001-7477-1965 ; 0000-0001-9859-8837 ; 0000-0002-8795-7651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Lu, Sijia</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Li, Shilin</creatorcontrib><creatorcontrib>Xie, Qiguang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Chen, Liyu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Weller, James L.</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Agricultural production</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Circadian rhythms</subject><subject>Crop production</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Flowers - metabolism</subject><subject>Flowers - radiation effects</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Glycine max - genetics</subject><subject>Glycine max - growth &amp; development</subject><subject>Glycine max - metabolism</subject><subject>Glycine max - radiation effects</subject><subject>Homology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Photoperiod</subject><subject>Photoperiodicity</subject><subject>Plant Breeding</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Sensitivity</subject><subject>Soybeans</subject><subject>Tobacco</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEUhS1ERUNgzQpkiQ2baa8fM7Y3SFXFS6rUTbu2HNuTOJrYg-1E5N8zQ0p4rO7ifPfo3HsQekPgioBg12M05YoCAcoJIfIZWhBQpOm4gudoAUBFIznll-hlKVsAUK2EF-iSsbaVnHQLtL7BNocarBlwToPHqcd143FJx5U3EfuDjyGusU27cfA_cIi_ZJtinfCZHjepptHnkBwuPpbJ7BDqEZvosHFmrKaGFF-hi94Mxb9-mkv0-PnTw-3X5u7-y7fbm7vGtqBq03dSceikJY5Z3vbKcGW9ZUw5YqwzdCUE67iVPQXHvWek7ZwUKy6css4StkQfT77jfrXzzvoppxn0mMPO5KNOJuh_lRg2ep0OWig6fWU2-PBkkNP3vS9V70KxfhhM9GlfNOVSiBYolRP6_j90m_Y5TufNlARG6JR2ia5PlM2plOz7cxgCei5RzyXqPyVOG-_-vuHM_25tAt6egG2pKZ91KgA6xgn7CW61pCE</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Bu, Tiantian</creator><creator>Lu, Sijia</creator><creator>Wang, Kai</creator><creator>Dong, Lidong</creator><creator>Li, Shilin</creator><creator>Xie, Qiguang</creator><creator>Xu, Xiaodong</creator><creator>Cheng, Qun</creator><creator>Chen, Liyu</creator><creator>Fang, Chao</creator><creator>Li, Haiyang</creator><creator>Liu, Baohui</creator><creator>Weller, James L.</creator><creator>Kong, Fanjiang</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2423-8286</orcidid><orcidid>https://orcid.org/0000-0002-3110-0915</orcidid><orcidid>https://orcid.org/0000-0002-8853-8918</orcidid><orcidid>https://orcid.org/0000-0002-6480-3078</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><orcidid>https://orcid.org/0000-0001-7477-1965</orcidid><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0002-8795-7651</orcidid></search><sort><creationdate>20210223</creationdate><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><author>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Agricultural production</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Circadian rhythms</topic><topic>Crop production</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Flowers - metabolism</topic><topic>Flowers - radiation effects</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Glycine max - genetics</topic><topic>Glycine max - growth &amp; development</topic><topic>Glycine max - metabolism</topic><topic>Glycine max - radiation effects</topic><topic>Homology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Photoperiod</topic><topic>Photoperiodicity</topic><topic>Plant Breeding</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Sensitivity</topic><topic>Soybeans</topic><topic>Tobacco</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Lu, Sijia</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Li, Shilin</creatorcontrib><creatorcontrib>Xie, Qiguang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Chen, Liyu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Weller, James L.</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Tiantian</au><au>Lu, Sijia</au><au>Wang, Kai</au><au>Dong, Lidong</au><au>Li, Shilin</au><au>Xie, Qiguang</au><au>Xu, Xiaodong</au><au>Cheng, Qun</au><au>Chen, Liyu</au><au>Fang, Chao</au><au>Li, Haiyang</au><au>Liu, Baohui</au><au>Weller, James L.</au><au>Kong, Fanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>118</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33558416</pmid><doi>10.1073/pnas.2010241118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2423-8286</orcidid><orcidid>https://orcid.org/0000-0002-3110-0915</orcidid><orcidid>https://orcid.org/0000-0002-8853-8918</orcidid><orcidid>https://orcid.org/0000-0002-6480-3078</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><orcidid>https://orcid.org/0000-0001-7477-1965</orcidid><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0002-8795-7651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (8), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7923351
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation
Adaptation, Physiological
Agricultural production
Binding sites
Biological Sciences
Circadian rhythms
Crop production
Flowering
Flowers - genetics
Flowers - growth & development
Flowers - metabolism
Flowers - radiation effects
Gene Expression Regulation, Plant - radiation effects
Genes
Genetic modification
Genome editing
Glycine max - genetics
Glycine max - growth & development
Glycine max - metabolism
Glycine max - radiation effects
Homology
Mutants
Mutation
Phenotype
Phenotypes
Photoperiod
Photoperiodicity
Plant Breeding
Plant Proteins - genetics
Plant Proteins - metabolism
Sensitivity
Soybeans
Tobacco
Transcription
title A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20critical%20role%20of%20the%20soybean%20evening%20complex%20in%20the%20control%20of%20photoperiod%20sensitivity%20and%20adaptation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bu,%20Tiantian&rft.date=2021-02-23&rft.volume=118&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2010241118&rft_dat=%3Cjstor_pubme%3E27006341%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488031277&rft_id=info:pmid/33558416&rft_jstor_id=27006341&rfr_iscdi=true