A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation
Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (8), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Bu, Tiantian Lu, Sijia Wang, Kai Dong, Lidong Li, Shilin Xie, Qiguang Xu, Xiaodong Cheng, Qun Chen, Liyu Fang, Chao Li, Haiyang Liu, Baohui Weller, James L. Kong, Fanjiang |
description | Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing. |
doi_str_mv | 10.1073/pnas.2010241118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7923351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27006341</jstor_id><sourcerecordid>27006341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS1ERUNgzQpkiQ2baa8fM7Y3SFXFS6rUTbu2HNuTOJrYg-1E5N8zQ0p4rO7ifPfo3HsQekPgioBg12M05YoCAcoJIfIZWhBQpOm4gudoAUBFIznll-hlKVsAUK2EF-iSsbaVnHQLtL7BNocarBlwToPHqcd143FJx5U3EfuDjyGusU27cfA_cIi_ZJtinfCZHjepptHnkBwuPpbJ7BDqEZvosHFmrKaGFF-hi94Mxb9-mkv0-PnTw-3X5u7-y7fbm7vGtqBq03dSceikJY5Z3vbKcGW9ZUw5YqwzdCUE67iVPQXHvWek7ZwUKy6css4StkQfT77jfrXzzvoppxn0mMPO5KNOJuh_lRg2ep0OWig6fWU2-PBkkNP3vS9V70KxfhhM9GlfNOVSiBYolRP6_j90m_Y5TufNlARG6JR2ia5PlM2plOz7cxgCei5RzyXqPyVOG-_-vuHM_25tAt6egG2pKZ91KgA6xgn7CW61pCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488031277</pqid></control><display><type>article</type><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</creator><creatorcontrib>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</creatorcontrib><description>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2010241118</identifier><identifier>PMID: 33558416</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation ; Adaptation, Physiological ; Agricultural production ; Binding sites ; Biological Sciences ; Circadian rhythms ; Crop production ; Flowering ; Flowers - genetics ; Flowers - growth & development ; Flowers - metabolism ; Flowers - radiation effects ; Gene Expression Regulation, Plant - radiation effects ; Genes ; Genetic modification ; Genome editing ; Glycine max - genetics ; Glycine max - growth & development ; Glycine max - metabolism ; Glycine max - radiation effects ; Homology ; Mutants ; Mutation ; Phenotype ; Phenotypes ; Photoperiod ; Photoperiodicity ; Plant Breeding ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Sensitivity ; Soybeans ; Tobacco ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (8), p.1-10</ispartof><rights>Copyright National Academy of Sciences Feb 23, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</citedby><cites>FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</cites><orcidid>0000-0003-2423-8286 ; 0000-0002-3110-0915 ; 0000-0002-8853-8918 ; 0000-0002-6480-3078 ; 0000-0002-8085-1678 ; 0000-0001-5595-2058 ; 0000-0001-7138-1478 ; 0000-0001-7477-1965 ; 0000-0001-9859-8837 ; 0000-0002-8795-7651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27006341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27006341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Lu, Sijia</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Li, Shilin</creatorcontrib><creatorcontrib>Xie, Qiguang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Chen, Liyu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Weller, James L.</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Agricultural production</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Circadian rhythms</subject><subject>Crop production</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Flowers - metabolism</subject><subject>Flowers - radiation effects</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Glycine max - genetics</subject><subject>Glycine max - growth & development</subject><subject>Glycine max - metabolism</subject><subject>Glycine max - radiation effects</subject><subject>Homology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Photoperiod</subject><subject>Photoperiodicity</subject><subject>Plant Breeding</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Sensitivity</subject><subject>Soybeans</subject><subject>Tobacco</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEUhS1ERUNgzQpkiQ2baa8fM7Y3SFXFS6rUTbu2HNuTOJrYg-1E5N8zQ0p4rO7ifPfo3HsQekPgioBg12M05YoCAcoJIfIZWhBQpOm4gudoAUBFIznll-hlKVsAUK2EF-iSsbaVnHQLtL7BNocarBlwToPHqcd143FJx5U3EfuDjyGusU27cfA_cIi_ZJtinfCZHjepptHnkBwuPpbJ7BDqEZvosHFmrKaGFF-hi94Mxb9-mkv0-PnTw-3X5u7-y7fbm7vGtqBq03dSceikJY5Z3vbKcGW9ZUw5YqwzdCUE67iVPQXHvWek7ZwUKy6css4StkQfT77jfrXzzvoppxn0mMPO5KNOJuh_lRg2ep0OWig6fWU2-PBkkNP3vS9V70KxfhhM9GlfNOVSiBYolRP6_j90m_Y5TufNlARG6JR2ia5PlM2plOz7cxgCei5RzyXqPyVOG-_-vuHM_25tAt6egG2pKZ91KgA6xgn7CW61pCE</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Bu, Tiantian</creator><creator>Lu, Sijia</creator><creator>Wang, Kai</creator><creator>Dong, Lidong</creator><creator>Li, Shilin</creator><creator>Xie, Qiguang</creator><creator>Xu, Xiaodong</creator><creator>Cheng, Qun</creator><creator>Chen, Liyu</creator><creator>Fang, Chao</creator><creator>Li, Haiyang</creator><creator>Liu, Baohui</creator><creator>Weller, James L.</creator><creator>Kong, Fanjiang</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2423-8286</orcidid><orcidid>https://orcid.org/0000-0002-3110-0915</orcidid><orcidid>https://orcid.org/0000-0002-8853-8918</orcidid><orcidid>https://orcid.org/0000-0002-6480-3078</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><orcidid>https://orcid.org/0000-0001-7477-1965</orcidid><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0002-8795-7651</orcidid></search><sort><creationdate>20210223</creationdate><title>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</title><author>Bu, Tiantian ; Lu, Sijia ; Wang, Kai ; Dong, Lidong ; Li, Shilin ; Xie, Qiguang ; Xu, Xiaodong ; Cheng, Qun ; Chen, Liyu ; Fang, Chao ; Li, Haiyang ; Liu, Baohui ; Weller, James L. ; Kong, Fanjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f6894068c1d3c45f9a49cec339d1acda2b77364c8f20d4ee3156d87b47d9cdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Agricultural production</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Circadian rhythms</topic><topic>Crop production</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Flowers - metabolism</topic><topic>Flowers - radiation effects</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Glycine max - genetics</topic><topic>Glycine max - growth & development</topic><topic>Glycine max - metabolism</topic><topic>Glycine max - radiation effects</topic><topic>Homology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Photoperiod</topic><topic>Photoperiodicity</topic><topic>Plant Breeding</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Sensitivity</topic><topic>Soybeans</topic><topic>Tobacco</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Tiantian</creatorcontrib><creatorcontrib>Lu, Sijia</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Dong, Lidong</creatorcontrib><creatorcontrib>Li, Shilin</creatorcontrib><creatorcontrib>Xie, Qiguang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cheng, Qun</creatorcontrib><creatorcontrib>Chen, Liyu</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Liu, Baohui</creatorcontrib><creatorcontrib>Weller, James L.</creatorcontrib><creatorcontrib>Kong, Fanjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Tiantian</au><au>Lu, Sijia</au><au>Wang, Kai</au><au>Dong, Lidong</au><au>Li, Shilin</au><au>Xie, Qiguang</au><au>Xu, Xiaodong</au><au>Cheng, Qun</au><au>Chen, Liyu</au><au>Fang, Chao</au><au>Li, Haiyang</au><au>Liu, Baohui</au><au>Weller, James L.</au><au>Kong, Fanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>118</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33558416</pmid><doi>10.1073/pnas.2010241118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2423-8286</orcidid><orcidid>https://orcid.org/0000-0002-3110-0915</orcidid><orcidid>https://orcid.org/0000-0002-8853-8918</orcidid><orcidid>https://orcid.org/0000-0002-6480-3078</orcidid><orcidid>https://orcid.org/0000-0002-8085-1678</orcidid><orcidid>https://orcid.org/0000-0001-5595-2058</orcidid><orcidid>https://orcid.org/0000-0001-7138-1478</orcidid><orcidid>https://orcid.org/0000-0001-7477-1965</orcidid><orcidid>https://orcid.org/0000-0001-9859-8837</orcidid><orcidid>https://orcid.org/0000-0002-8795-7651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-02, Vol.118 (8), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7923351 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptation Adaptation, Physiological Agricultural production Binding sites Biological Sciences Circadian rhythms Crop production Flowering Flowers - genetics Flowers - growth & development Flowers - metabolism Flowers - radiation effects Gene Expression Regulation, Plant - radiation effects Genes Genetic modification Genome editing Glycine max - genetics Glycine max - growth & development Glycine max - metabolism Glycine max - radiation effects Homology Mutants Mutation Phenotype Phenotypes Photoperiod Photoperiodicity Plant Breeding Plant Proteins - genetics Plant Proteins - metabolism Sensitivity Soybeans Tobacco Transcription |
title | A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20critical%20role%20of%20the%20soybean%20evening%20complex%20in%20the%20control%20of%20photoperiod%20sensitivity%20and%20adaptation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bu,%20Tiantian&rft.date=2021-02-23&rft.volume=118&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2010241118&rft_dat=%3Cjstor_pubme%3E27006341%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488031277&rft_id=info:pmid/33558416&rft_jstor_id=27006341&rfr_iscdi=true |