Zincbindpredict-Prediction of Zinc Binding Sites in Proteins
Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechan...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-02, Vol.26 (4), p.966, Article 966 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 966 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 26 |
creator | Ireland, Sam M. Martin, Andrew C. R. |
description | Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC >= 0.88, recall >= 0.93 and precision >= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC >= 0.64, recall >= 0.80 and precision >= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API. |
doi_str_mv | 10.3390/molecules26040966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1d715a7e3114ea09b4c7742a5a3f00c</doaj_id><sourcerecordid>2498513339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtR3HX1B3iRPgrSWvnuBhF08GNhwQX14iWkk8qYpScZk27Ff2_GXoddvHiqot6n3lR4m-YxgeeMDfBilya0y4SFSuAwSHmnOSWcQseAD3dv9CfNg1KuACjhRNxvThiTqs7htHn5NUQ7huj2GV2wc3e51pBim3x7UNs3VQ5x234KM5Y2xPYypxlDLA-be95MBR9d17Pmy7u3nzcfuouP7883ry86y6WYOzFyV8_DnhLnCTAy9oJ4LxEoeioVWIN0pMIx1_dcVEoSwZRRjjPigbOz5nz1dclc6X0OO5N_6WSC_jNIeatNnoOdUHviFBFGISOEo4Fh5FYpTo0wzAPY6vVq9dov4w6dxThnM90yva3E8E1v0w-tBtILwarB02uDnL4vWGa9C8XiNJmIaSma8qF-j9WAKkpW1OZUSkZ_fIaAPiSo_0mw7jy5ed9x429kFXi2Aj9xTL7YgNHiEQMASTlRRNYOSKX7_6c3YTaH5DdpiTP7DbVBuXo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498513339</pqid></control><display><type>article</type><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ireland, Sam M. ; Martin, Andrew C. R.</creator><creatorcontrib>Ireland, Sam M. ; Martin, Andrew C. R.</creatorcontrib><description>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC >= 0.88, recall >= 0.93 and precision >= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC >= 0.64, recall >= 0.80 and precision >= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26040966</identifier><identifier>PMID: 33673040</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Binding Sites - genetics ; Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Computational Biology ; Databases, Protein ; Life Sciences & Biomedicine ; Ligands ; Machine Learning ; metal binding ; Physical Sciences ; prediction ; Protein Binding - genetics ; proteins ; Proteins - chemistry ; Proteins - genetics ; Science & Technology ; Software ; Support Vector Machine ; zinc ; Zinc - chemistry</subject><ispartof>Molecules (Basel, Switzerland), 2021-02, Vol.26 (4), p.966, Article 966</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000624171600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</citedby><cites>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</cites><orcidid>0000-0001-8248-7614 ; 0000-0002-2835-2572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33673040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ireland, Sam M.</creatorcontrib><creatorcontrib>Martin, Andrew C. R.</creatorcontrib><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC >= 0.88, recall >= 0.93 and precision >= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC >= 0.64, recall >= 0.80 and precision >= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</description><subject>Algorithms</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computational Biology</subject><subject>Databases, Protein</subject><subject>Life Sciences & Biomedicine</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>metal binding</subject><subject>Physical Sciences</subject><subject>prediction</subject><subject>Protein Binding - genetics</subject><subject>proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Science & Technology</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>zinc</subject><subject>Zinc - chemistry</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2LFDEQhhtR3HX1B3iRPgrSWvnuBhF08GNhwQX14iWkk8qYpScZk27Ff2_GXoddvHiqot6n3lR4m-YxgeeMDfBilya0y4SFSuAwSHmnOSWcQseAD3dv9CfNg1KuACjhRNxvThiTqs7htHn5NUQ7huj2GV2wc3e51pBim3x7UNs3VQ5x234KM5Y2xPYypxlDLA-be95MBR9d17Pmy7u3nzcfuouP7883ry86y6WYOzFyV8_DnhLnCTAy9oJ4LxEoeioVWIN0pMIx1_dcVEoSwZRRjjPigbOz5nz1dclc6X0OO5N_6WSC_jNIeatNnoOdUHviFBFGISOEo4Fh5FYpTo0wzAPY6vVq9dov4w6dxThnM90yva3E8E1v0w-tBtILwarB02uDnL4vWGa9C8XiNJmIaSma8qF-j9WAKkpW1OZUSkZ_fIaAPiSo_0mw7jy5ed9x429kFXi2Aj9xTL7YgNHiEQMASTlRRNYOSKX7_6c3YTaH5DdpiTP7DbVBuXo</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Ireland, Sam M.</creator><creator>Martin, Andrew C. R.</creator><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8248-7614</orcidid><orcidid>https://orcid.org/0000-0002-2835-2572</orcidid></search><sort><creationdate>20210212</creationdate><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><author>Ireland, Sam M. ; Martin, Andrew C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computational Biology</topic><topic>Databases, Protein</topic><topic>Life Sciences & Biomedicine</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>metal binding</topic><topic>Physical Sciences</topic><topic>prediction</topic><topic>Protein Binding - genetics</topic><topic>proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Science & Technology</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>zinc</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ireland, Sam M.</creatorcontrib><creatorcontrib>Martin, Andrew C. R.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ireland, Sam M.</au><au>Martin, Andrew C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2021-02-12</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>966</spage><pages>966-</pages><artnum>966</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC >= 0.88, recall >= 0.93 and precision >= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC >= 0.64, recall >= 0.80 and precision >= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33673040</pmid><doi>10.3390/molecules26040966</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8248-7614</orcidid><orcidid>https://orcid.org/0000-0002-2835-2572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2021-02, Vol.26 (4), p.966, Article 966 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918553 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Binding Sites - genetics Biochemistry & Molecular Biology Chemistry Chemistry, Multidisciplinary Computational Biology Databases, Protein Life Sciences & Biomedicine Ligands Machine Learning metal binding Physical Sciences prediction Protein Binding - genetics proteins Proteins - chemistry Proteins - genetics Science & Technology Software Support Vector Machine zinc Zinc - chemistry |
title | Zincbindpredict-Prediction of Zinc Binding Sites in Proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zincbindpredict-Prediction%20of%20Zinc%20Binding%20Sites%20in%20Proteins&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ireland,%20Sam%20M.&rft.date=2021-02-12&rft.volume=26&rft.issue=4&rft.spage=966&rft.pages=966-&rft.artnum=966&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26040966&rft_dat=%3Cproquest_pubme%3E2498513339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498513339&rft_id=info:pmid/33673040&rft_doaj_id=oai_doaj_org_article_f1d715a7e3114ea09b4c7742a5a3f00c&rfr_iscdi=true |