Zincbindpredict-Prediction of Zinc Binding Sites in Proteins

Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-02, Vol.26 (4), p.966, Article 966
Hauptverfasser: Ireland, Sam M., Martin, Andrew C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 966
container_title Molecules (Basel, Switzerland)
container_volume 26
creator Ireland, Sam M.
Martin, Andrew C. R.
description Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC >= 0.88, recall >= 0.93 and precision >= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC >= 0.64, recall >= 0.80 and precision >= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.
doi_str_mv 10.3390/molecules26040966
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1d715a7e3114ea09b4c7742a5a3f00c</doaj_id><sourcerecordid>2498513339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtR3HX1B3iRPgrSWvnuBhF08GNhwQX14iWkk8qYpScZk27Ff2_GXoddvHiqot6n3lR4m-YxgeeMDfBilya0y4SFSuAwSHmnOSWcQseAD3dv9CfNg1KuACjhRNxvThiTqs7htHn5NUQ7huj2GV2wc3e51pBim3x7UNs3VQ5x234KM5Y2xPYypxlDLA-be95MBR9d17Pmy7u3nzcfuouP7883ry86y6WYOzFyV8_DnhLnCTAy9oJ4LxEoeioVWIN0pMIx1_dcVEoSwZRRjjPigbOz5nz1dclc6X0OO5N_6WSC_jNIeatNnoOdUHviFBFGISOEo4Fh5FYpTo0wzAPY6vVq9dov4w6dxThnM90yva3E8E1v0w-tBtILwarB02uDnL4vWGa9C8XiNJmIaSma8qF-j9WAKkpW1OZUSkZ_fIaAPiSo_0mw7jy5ed9x429kFXi2Aj9xTL7YgNHiEQMASTlRRNYOSKX7_6c3YTaH5DdpiTP7DbVBuXo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498513339</pqid></control><display><type>article</type><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ireland, Sam M. ; Martin, Andrew C. R.</creator><creatorcontrib>Ireland, Sam M. ; Martin, Andrew C. R.</creatorcontrib><description>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC &gt;= 0.88, recall &gt;= 0.93 and precision &gt;= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC &gt;= 0.64, recall &gt;= 0.80 and precision &gt;= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26040966</identifier><identifier>PMID: 33673040</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Binding Sites - genetics ; Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; Computational Biology ; Databases, Protein ; Life Sciences &amp; Biomedicine ; Ligands ; Machine Learning ; metal binding ; Physical Sciences ; prediction ; Protein Binding - genetics ; proteins ; Proteins - chemistry ; Proteins - genetics ; Science &amp; Technology ; Software ; Support Vector Machine ; zinc ; Zinc - chemistry</subject><ispartof>Molecules (Basel, Switzerland), 2021-02, Vol.26 (4), p.966, Article 966</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000624171600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</citedby><cites>FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</cites><orcidid>0000-0001-8248-7614 ; 0000-0002-2835-2572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33673040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ireland, Sam M.</creatorcontrib><creatorcontrib>Martin, Andrew C. R.</creatorcontrib><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC &gt;= 0.88, recall &gt;= 0.93 and precision &gt;= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC &gt;= 0.64, recall &gt;= 0.80 and precision &gt;= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</description><subject>Algorithms</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computational Biology</subject><subject>Databases, Protein</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>metal binding</subject><subject>Physical Sciences</subject><subject>prediction</subject><subject>Protein Binding - genetics</subject><subject>proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>zinc</subject><subject>Zinc - chemistry</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2LFDEQhhtR3HX1B3iRPgrSWvnuBhF08GNhwQX14iWkk8qYpScZk27Ff2_GXoddvHiqot6n3lR4m-YxgeeMDfBilya0y4SFSuAwSHmnOSWcQseAD3dv9CfNg1KuACjhRNxvThiTqs7htHn5NUQ7huj2GV2wc3e51pBim3x7UNs3VQ5x234KM5Y2xPYypxlDLA-be95MBR9d17Pmy7u3nzcfuouP7883ry86y6WYOzFyV8_DnhLnCTAy9oJ4LxEoeioVWIN0pMIx1_dcVEoSwZRRjjPigbOz5nz1dclc6X0OO5N_6WSC_jNIeatNnoOdUHviFBFGISOEo4Fh5FYpTo0wzAPY6vVq9dov4w6dxThnM90yva3E8E1v0w-tBtILwarB02uDnL4vWGa9C8XiNJmIaSma8qF-j9WAKkpW1OZUSkZ_fIaAPiSo_0mw7jy5ed9x429kFXi2Aj9xTL7YgNHiEQMASTlRRNYOSKX7_6c3YTaH5DdpiTP7DbVBuXo</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Ireland, Sam M.</creator><creator>Martin, Andrew C. R.</creator><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8248-7614</orcidid><orcidid>https://orcid.org/0000-0002-2835-2572</orcidid></search><sort><creationdate>20210212</creationdate><title>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</title><author>Ireland, Sam M. ; Martin, Andrew C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5b4d409e821df1031b851ff6e02ef2670cae2b25d3d884521d61537a7d431f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computational Biology</topic><topic>Databases, Protein</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>metal binding</topic><topic>Physical Sciences</topic><topic>prediction</topic><topic>Protein Binding - genetics</topic><topic>proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>zinc</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ireland, Sam M.</creatorcontrib><creatorcontrib>Martin, Andrew C. R.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ireland, Sam M.</au><au>Martin, Andrew C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zincbindpredict-Prediction of Zinc Binding Sites in Proteins</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2021-02-12</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>966</spage><pages>966-</pages><artnum>966</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Background: Zinc binding proteins make up a significant proportion of the proteomes of most organisms and, within those proteins, zinc performs roles in catalysis and structure stabilisation. Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the mechanism by which it carries out those functions. Computational means of doing so are faster than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby guiding complimentary experimental approaches. Typically, computational models of zinc binding predict zinc binding for individual residues rather than as a single binding site, and typically do not distinguish between different classes of binding site-missing crucial properties indicative of zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc binding site families for both structure and sequence. Results: The models all achieve an MCC &gt;= 0.88, recall &gt;= 0.93 and precision &gt;= 0.91 for the structural models (mean MCC = 0.97), while the sequence models have MCC &gt;= 0.64, recall &gt;= 0.80 and precision &gt;= 0.83 (mean MCC = 0.87), with the models for binding sites containing four liganding residues performing much better than this. Conclusions: The predictors outperform competing zinc binding site predictors and are available online via a web interface and a GraphQL API.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33673040</pmid><doi>10.3390/molecules26040966</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8248-7614</orcidid><orcidid>https://orcid.org/0000-0002-2835-2572</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2021-02, Vol.26 (4), p.966, Article 966
issn 1420-3049
1420-3049
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918553
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Binding Sites - genetics
Biochemistry & Molecular Biology
Chemistry
Chemistry, Multidisciplinary
Computational Biology
Databases, Protein
Life Sciences & Biomedicine
Ligands
Machine Learning
metal binding
Physical Sciences
prediction
Protein Binding - genetics
proteins
Proteins - chemistry
Proteins - genetics
Science & Technology
Software
Support Vector Machine
zinc
Zinc - chemistry
title Zincbindpredict-Prediction of Zinc Binding Sites in Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zincbindpredict-Prediction%20of%20Zinc%20Binding%20Sites%20in%20Proteins&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Ireland,%20Sam%20M.&rft.date=2021-02-12&rft.volume=26&rft.issue=4&rft.spage=966&rft.pages=966-&rft.artnum=966&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26040966&rft_dat=%3Cproquest_pubme%3E2498513339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498513339&rft_id=info:pmid/33673040&rft_doaj_id=oai_doaj_org_article_f1d715a7e3114ea09b4c7742a5a3f00c&rfr_iscdi=true