Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity

Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (2), p.421, Article 421
Hauptverfasser: Guo, Xuguang, Xue, Lejie, Yang, Zhenxing, Xu, Mengjian, Zhu, Yiming, Shao, Dixiang, Fu, Zhanglong, Tan, Zhiyong, Wang, Chang, Cao, Juncheng, Zhang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 421
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Guo, Xuguang
Xue, Lejie
Yang, Zhenxing
Xu, Mengjian
Zhu, Yiming
Shao, Dixiang
Fu, Zhanglong
Tan, Zhiyong
Wang, Chang
Cao, Juncheng
Zhang, Chao
description Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.
doi_str_mv 10.3390/nano11020421
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a687e3781454067b1de4aca76632817</doaj_id><sourcerecordid>2488172463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIRKvSG2e0EhckGvDn2r4gVVFbKjXiQDlbs97ZxNHGDl6nKPx6nKZEKSd8sWU_esb2O1X1lpJPnBvyOUCIlBJGBKMvqlNGlJkIY-jLo_VJdT6OS1KGoVxL_ro64Vw2jBN-Ws2-5xTDvL7HBAtM-Xd92Y4xrbOPoY59PYshDrDFVN8kWC8wYH21arHrsKt9yLGGeuZdig4efN6-qV71MIx4_jSfVT-ur-6nXyd3325up5d3EyeUzhPHlASqUfeGyZ5o1wDvhaa8bSUap4xyQHTLejBGCNkp2lFBse-1aRAZ42fV7d7bRVjadfIrSFsbwdvHjZjmFlL2bkDLoNEKudJUSEEa1dIOBThQTcOZpqq4vuxd6027ws5hyAmGZ9LnJ8Ev7Dw-WGWolEIUwYcnQYo_Nzhmu_Kjw2GAgHEzWiZ0qcNEwwv6_h90GTcplK96pCSTJbVCXeyp8q_jmLA_XIYSu4vdHsde8HfHDzjAf0MuwMc98Avb2I_OY3B4wEpfNIyZUn_XIjud_n966jPsWmUaNyHzPzBwyCI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488525207</pqid></control><display><type>article</type><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</creator><creatorcontrib>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</creatorcontrib><description>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11020421</identifier><identifier>PMID: 33562303</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Absorption ; absorption enhancement ; Approximation ; Boundary conditions ; Chemical vapor deposition ; Chemistry ; Chemistry, Multidisciplinary ; Crystal structure ; Electric fields ; Electromagnetism ; Graphene ; Materials Science ; Materials Science, Multidisciplinary ; microcavity ; Modulators ; Monolayers ; Nanoscience &amp; Nanotechnology ; near field ; Physical Sciences ; Physics ; Physics, Applied ; Resonant frequencies ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Simulation ; Switches ; Technology ; terahertz ; Terahertz frequencies ; Theoretical analysis ; Velocity ; Waveguides</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-02, Vol.11 (2), p.421, Article 421</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000622924800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</citedby><cites>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</cites><orcidid>0000-0002-0896-0351 ; 0000-0003-3528-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33562303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Xue, Lejie</creatorcontrib><creatorcontrib>Yang, Zhenxing</creatorcontrib><creatorcontrib>Xu, Mengjian</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Tan, Zhiyong</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><addtitle>Nanomaterials (Basel)</addtitle><description>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</description><subject>Absorption</subject><subject>absorption enhancement</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Chemical vapor deposition</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystal structure</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>microcavity</subject><subject>Modulators</subject><subject>Monolayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>near field</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resonant frequencies</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Simulation</subject><subject>Switches</subject><subject>Technology</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>Theoretical analysis</subject><subject>Velocity</subject><subject>Waveguides</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIRKvSG2e0EhckGvDn2r4gVVFbKjXiQDlbs97ZxNHGDl6nKPx6nKZEKSd8sWU_esb2O1X1lpJPnBvyOUCIlBJGBKMvqlNGlJkIY-jLo_VJdT6OS1KGoVxL_ro64Vw2jBN-Ws2-5xTDvL7HBAtM-Xd92Y4xrbOPoY59PYshDrDFVN8kWC8wYH21arHrsKt9yLGGeuZdig4efN6-qV71MIx4_jSfVT-ur-6nXyd3325up5d3EyeUzhPHlASqUfeGyZ5o1wDvhaa8bSUap4xyQHTLejBGCNkp2lFBse-1aRAZ42fV7d7bRVjadfIrSFsbwdvHjZjmFlL2bkDLoNEKudJUSEEa1dIOBThQTcOZpqq4vuxd6027ws5hyAmGZ9LnJ8Ev7Dw-WGWolEIUwYcnQYo_Nzhmu_Kjw2GAgHEzWiZ0qcNEwwv6_h90GTcplK96pCSTJbVCXeyp8q_jmLA_XIYSu4vdHsde8HfHDzjAf0MuwMc98Avb2I_OY3B4wEpfNIyZUn_XIjud_n966jPsWmUaNyHzPzBwyCI</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Guo, Xuguang</creator><creator>Xue, Lejie</creator><creator>Yang, Zhenxing</creator><creator>Xu, Mengjian</creator><creator>Zhu, Yiming</creator><creator>Shao, Dixiang</creator><creator>Fu, Zhanglong</creator><creator>Tan, Zhiyong</creator><creator>Wang, Chang</creator><creator>Cao, Juncheng</creator><creator>Zhang, Chao</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0896-0351</orcidid><orcidid>https://orcid.org/0000-0003-3528-2901</orcidid></search><sort><creationdate>20210207</creationdate><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><author>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>absorption enhancement</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Chemical vapor deposition</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystal structure</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>microcavity</topic><topic>Modulators</topic><topic>Monolayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>near field</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resonant frequencies</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Simulation</topic><topic>Switches</topic><topic>Technology</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>Theoretical analysis</topic><topic>Velocity</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Xue, Lejie</creatorcontrib><creatorcontrib>Yang, Zhenxing</creatorcontrib><creatorcontrib>Xu, Mengjian</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Tan, Zhiyong</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xuguang</au><au>Xue, Lejie</au><au>Yang, Zhenxing</au><au>Xu, Mengjian</au><au>Zhu, Yiming</au><au>Shao, Dixiang</au><au>Fu, Zhanglong</au><au>Tan, Zhiyong</au><au>Wang, Chang</au><au>Cao, Juncheng</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><addtitle>Nanomaterials (Basel)</addtitle><date>2021-02-07</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>421</spage><pages>421-</pages><artnum>421</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33562303</pmid><doi>10.3390/nano11020421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0896-0351</orcidid><orcidid>https://orcid.org/0000-0003-3528-2901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-02, Vol.11 (2), p.421, Article 421
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915544
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Absorption
absorption enhancement
Approximation
Boundary conditions
Chemical vapor deposition
Chemistry
Chemistry, Multidisciplinary
Crystal structure
Electric fields
Electromagnetism
Graphene
Materials Science
Materials Science, Multidisciplinary
microcavity
Modulators
Monolayers
Nanoscience & Nanotechnology
near field
Physical Sciences
Physics
Physics, Applied
Resonant frequencies
Science & Technology
Science & Technology - Other Topics
Simulation
Switches
Technology
terahertz
Terahertz frequencies
Theoretical analysis
Velocity
Waveguides
title Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Terahertz%20Absorption%20of%20Monolayer%20Graphene%20Embedded%20into%20a%20Microcavity&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Guo,%20Xuguang&rft.date=2021-02-07&rft.volume=11&rft.issue=2&rft.spage=421&rft.pages=421-&rft.artnum=421&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11020421&rft_dat=%3Cproquest_pubme%3E2488172463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488525207&rft_id=info:pmid/33562303&rft_doaj_id=oai_doaj_org_article_2a687e3781454067b1de4aca76632817&rfr_iscdi=true