Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity
Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (2), p.421, Article 421 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 11 |
creator | Guo, Xuguang Xue, Lejie Yang, Zhenxing Xu, Mengjian Zhu, Yiming Shao, Dixiang Fu, Zhanglong Tan, Zhiyong Wang, Chang Cao, Juncheng Zhang, Chao |
description | Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures. |
doi_str_mv | 10.3390/nano11020421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a687e3781454067b1de4aca76632817</doaj_id><sourcerecordid>2488172463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIRKvSG2e0EhckGvDn2r4gVVFbKjXiQDlbs97ZxNHGDl6nKPx6nKZEKSd8sWU_esb2O1X1lpJPnBvyOUCIlBJGBKMvqlNGlJkIY-jLo_VJdT6OS1KGoVxL_ro64Vw2jBN-Ws2-5xTDvL7HBAtM-Xd92Y4xrbOPoY59PYshDrDFVN8kWC8wYH21arHrsKt9yLGGeuZdig4efN6-qV71MIx4_jSfVT-ur-6nXyd3325up5d3EyeUzhPHlASqUfeGyZ5o1wDvhaa8bSUap4xyQHTLejBGCNkp2lFBse-1aRAZ42fV7d7bRVjadfIrSFsbwdvHjZjmFlL2bkDLoNEKudJUSEEa1dIOBThQTcOZpqq4vuxd6027ws5hyAmGZ9LnJ8Ev7Dw-WGWolEIUwYcnQYo_Nzhmu_Kjw2GAgHEzWiZ0qcNEwwv6_h90GTcplK96pCSTJbVCXeyp8q_jmLA_XIYSu4vdHsde8HfHDzjAf0MuwMc98Avb2I_OY3B4wEpfNIyZUn_XIjud_n966jPsWmUaNyHzPzBwyCI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488525207</pqid></control><display><type>article</type><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</creator><creatorcontrib>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</creatorcontrib><description>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11020421</identifier><identifier>PMID: 33562303</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Absorption ; absorption enhancement ; Approximation ; Boundary conditions ; Chemical vapor deposition ; Chemistry ; Chemistry, Multidisciplinary ; Crystal structure ; Electric fields ; Electromagnetism ; Graphene ; Materials Science ; Materials Science, Multidisciplinary ; microcavity ; Modulators ; Monolayers ; Nanoscience & Nanotechnology ; near field ; Physical Sciences ; Physics ; Physics, Applied ; Resonant frequencies ; Science & Technology ; Science & Technology - Other Topics ; Simulation ; Switches ; Technology ; terahertz ; Terahertz frequencies ; Theoretical analysis ; Velocity ; Waveguides</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-02, Vol.11 (2), p.421, Article 421</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000622924800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</citedby><cites>FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</cites><orcidid>0000-0002-0896-0351 ; 0000-0003-3528-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33562303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Xue, Lejie</creatorcontrib><creatorcontrib>Yang, Zhenxing</creatorcontrib><creatorcontrib>Xu, Mengjian</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Tan, Zhiyong</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><addtitle>Nanomaterials (Basel)</addtitle><description>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</description><subject>Absorption</subject><subject>absorption enhancement</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Chemical vapor deposition</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystal structure</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>microcavity</subject><subject>Modulators</subject><subject>Monolayers</subject><subject>Nanoscience & Nanotechnology</subject><subject>near field</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resonant frequencies</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Simulation</subject><subject>Switches</subject><subject>Technology</subject><subject>terahertz</subject><subject>Terahertz frequencies</subject><subject>Theoretical analysis</subject><subject>Velocity</subject><subject>Waveguides</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIRKvSG2e0EhckGvDn2r4gVVFbKjXiQDlbs97ZxNHGDl6nKPx6nKZEKSd8sWU_esb2O1X1lpJPnBvyOUCIlBJGBKMvqlNGlJkIY-jLo_VJdT6OS1KGoVxL_ro64Vw2jBN-Ws2-5xTDvL7HBAtM-Xd92Y4xrbOPoY59PYshDrDFVN8kWC8wYH21arHrsKt9yLGGeuZdig4efN6-qV71MIx4_jSfVT-ur-6nXyd3325up5d3EyeUzhPHlASqUfeGyZ5o1wDvhaa8bSUap4xyQHTLejBGCNkp2lFBse-1aRAZ42fV7d7bRVjadfIrSFsbwdvHjZjmFlL2bkDLoNEKudJUSEEa1dIOBThQTcOZpqq4vuxd6027ws5hyAmGZ9LnJ8Ev7Dw-WGWolEIUwYcnQYo_Nzhmu_Kjw2GAgHEzWiZ0qcNEwwv6_h90GTcplK96pCSTJbVCXeyp8q_jmLA_XIYSu4vdHsde8HfHDzjAf0MuwMc98Avb2I_OY3B4wEpfNIyZUn_XIjud_n966jPsWmUaNyHzPzBwyCI</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Guo, Xuguang</creator><creator>Xue, Lejie</creator><creator>Yang, Zhenxing</creator><creator>Xu, Mengjian</creator><creator>Zhu, Yiming</creator><creator>Shao, Dixiang</creator><creator>Fu, Zhanglong</creator><creator>Tan, Zhiyong</creator><creator>Wang, Chang</creator><creator>Cao, Juncheng</creator><creator>Zhang, Chao</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0896-0351</orcidid><orcidid>https://orcid.org/0000-0003-3528-2901</orcidid></search><sort><creationdate>20210207</creationdate><title>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</title><author>Guo, Xuguang ; Xue, Lejie ; Yang, Zhenxing ; Xu, Mengjian ; Zhu, Yiming ; Shao, Dixiang ; Fu, Zhanglong ; Tan, Zhiyong ; Wang, Chang ; Cao, Juncheng ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c275a18e8f925f08c6a3f4813bb5e9c797ca08b2fa99445d71d141eff896ee223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>absorption enhancement</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Chemical vapor deposition</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystal structure</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>microcavity</topic><topic>Modulators</topic><topic>Monolayers</topic><topic>Nanoscience & Nanotechnology</topic><topic>near field</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resonant frequencies</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Simulation</topic><topic>Switches</topic><topic>Technology</topic><topic>terahertz</topic><topic>Terahertz frequencies</topic><topic>Theoretical analysis</topic><topic>Velocity</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xuguang</creatorcontrib><creatorcontrib>Xue, Lejie</creatorcontrib><creatorcontrib>Yang, Zhenxing</creatorcontrib><creatorcontrib>Xu, Mengjian</creatorcontrib><creatorcontrib>Zhu, Yiming</creatorcontrib><creatorcontrib>Shao, Dixiang</creatorcontrib><creatorcontrib>Fu, Zhanglong</creatorcontrib><creatorcontrib>Tan, Zhiyong</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Cao, Juncheng</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xuguang</au><au>Xue, Lejie</au><au>Yang, Zhenxing</au><au>Xu, Mengjian</au><au>Zhu, Yiming</au><au>Shao, Dixiang</au><au>Fu, Zhanglong</au><au>Tan, Zhiyong</au><au>Wang, Chang</au><au>Cao, Juncheng</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><addtitle>Nanomaterials (Basel)</addtitle><date>2021-02-07</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>421</spage><pages>421-</pages><artnum>421</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry-Perot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33562303</pmid><doi>10.3390/nano11020421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0896-0351</orcidid><orcidid>https://orcid.org/0000-0003-3528-2901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2021-02, Vol.11 (2), p.421, Article 421 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915544 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Absorption absorption enhancement Approximation Boundary conditions Chemical vapor deposition Chemistry Chemistry, Multidisciplinary Crystal structure Electric fields Electromagnetism Graphene Materials Science Materials Science, Multidisciplinary microcavity Modulators Monolayers Nanoscience & Nanotechnology near field Physical Sciences Physics Physics, Applied Resonant frequencies Science & Technology Science & Technology - Other Topics Simulation Switches Technology terahertz Terahertz frequencies Theoretical analysis Velocity Waveguides |
title | Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Terahertz%20Absorption%20of%20Monolayer%20Graphene%20Embedded%20into%20a%20Microcavity&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Guo,%20Xuguang&rft.date=2021-02-07&rft.volume=11&rft.issue=2&rft.spage=421&rft.pages=421-&rft.artnum=421&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11020421&rft_dat=%3Cproquest_pubme%3E2488172463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488525207&rft_id=info:pmid/33562303&rft_doaj_id=oai_doaj_org_article_2a687e3781454067b1de4aca76632817&rfr_iscdi=true |