Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor

Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-02, Vol.7 (9)
Hauptverfasser: Qiang, Xiaogang, Wang, Yizhi, Xue, Shichuan, Ge, Renyou, Chen, Lifeng, Liu, Yingwen, Huang, Anqi, Fu, Xiang, Xu, Ping, Yi, Teng, Xu, Fufang, Deng, Mingtang, Wang, Jingbo B, Meinecke, Jasmin D A, Matthews, Jonathan C F, Cai, Xinlun, Yang, Xuejun, Wu, Junjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Science advances
container_volume 7
creator Qiang, Xiaogang
Wang, Yizhi
Xue, Shichuan
Ge, Renyou
Chen, Lifeng
Liu, Yingwen
Huang, Anqi
Fu, Xiang
Xu, Ping
Yi, Teng
Xu, Fufang
Deng, Mingtang
Wang, Jingbo B
Meinecke, Jasmin D A
Matthews, Jonathan C F
Cai, Xinlun
Yang, Xuejun
Wu, Junjie
description Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.
doi_str_mv 10.1126/sciadv.abb8375
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494305244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</originalsourceid><addsrcrecordid>eNpVUc9LwzAYDaK4MXf1KD166Uyapmsuggx_DAZe9CaEL2m6RtumS9KJ_70dm2Oe3oP3vvd9Hw-ha4JnhCTZnVcGiu0MpMzpnJ2hcTJAnLA0Pz_hIzT1_hNjTNIsY4RfohGl2aAmZIw-lk1X60a3wbTraO2gq-JQaet0MCra9NCGvomgXltnQtX4yLYRRN7URg2sq2yw7YnxG-qvqHNWae-tu0IXJdReTw84Qe9Pj2-Ll3j1-rxcPKxiRTkOcclAaowl4ZlKeEY4zVUOTBWFpLIoCOOgNNdlziDDJVWpkjoHmCsoOMg0oxN0v8_tetnoQg3fOKhF50wD7kdYMOK_0ppKrO1WzDnmeZ4OAbeHAGc3vfZBNMYrXdfQatt7kaQ8pZgl6c4621uVs947XR7XECx2rYh9K-LQyjBwc3rc0f7XAf0F_NWPQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494305244</pqid></control><display><type>article</type><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</creator><creatorcontrib>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</creatorcontrib><description>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb8375</identifier><identifier>PMID: 33637521</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2021-02, Vol.7 (9)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</citedby><cites>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</cites><orcidid>0000-0001-5951-8988 ; 0000-0002-5544-7307 ; 0000-0002-1365-8501 ; 0000-0002-9232-7523 ; 0000-0003-2809-6158 ; 0000-0001-5684-3857 ; 0000-0002-3989-000X ; 0000-0001-6184-1813 ; 0000-0003-1971-8613 ; 0000-0001-7544-0084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33637521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiang, Xiaogang</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Xue, Shichuan</creatorcontrib><creatorcontrib>Ge, Renyou</creatorcontrib><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Liu, Yingwen</creatorcontrib><creatorcontrib>Huang, Anqi</creatorcontrib><creatorcontrib>Fu, Xiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yi, Teng</creatorcontrib><creatorcontrib>Xu, Fufang</creatorcontrib><creatorcontrib>Deng, Mingtang</creatorcontrib><creatorcontrib>Wang, Jingbo B</creatorcontrib><creatorcontrib>Meinecke, Jasmin D A</creatorcontrib><creatorcontrib>Matthews, Jonathan C F</creatorcontrib><creatorcontrib>Cai, Xinlun</creatorcontrib><creatorcontrib>Yang, Xuejun</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</description><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUc9LwzAYDaK4MXf1KD166Uyapmsuggx_DAZe9CaEL2m6RtumS9KJ_70dm2Oe3oP3vvd9Hw-ha4JnhCTZnVcGiu0MpMzpnJ2hcTJAnLA0Pz_hIzT1_hNjTNIsY4RfohGl2aAmZIw-lk1X60a3wbTraO2gq-JQaet0MCra9NCGvomgXltnQtX4yLYRRN7URg2sq2yw7YnxG-qvqHNWae-tu0IXJdReTw84Qe9Pj2-Ll3j1-rxcPKxiRTkOcclAaowl4ZlKeEY4zVUOTBWFpLIoCOOgNNdlziDDJVWpkjoHmCsoOMg0oxN0v8_tetnoQg3fOKhF50wD7kdYMOK_0ppKrO1WzDnmeZ4OAbeHAGc3vfZBNMYrXdfQatt7kaQ8pZgl6c4621uVs947XR7XECx2rYh9K-LQyjBwc3rc0f7XAf0F_NWPQQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qiang, Xiaogang</creator><creator>Wang, Yizhi</creator><creator>Xue, Shichuan</creator><creator>Ge, Renyou</creator><creator>Chen, Lifeng</creator><creator>Liu, Yingwen</creator><creator>Huang, Anqi</creator><creator>Fu, Xiang</creator><creator>Xu, Ping</creator><creator>Yi, Teng</creator><creator>Xu, Fufang</creator><creator>Deng, Mingtang</creator><creator>Wang, Jingbo B</creator><creator>Meinecke, Jasmin D A</creator><creator>Matthews, Jonathan C F</creator><creator>Cai, Xinlun</creator><creator>Yang, Xuejun</creator><creator>Wu, Junjie</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5951-8988</orcidid><orcidid>https://orcid.org/0000-0002-5544-7307</orcidid><orcidid>https://orcid.org/0000-0002-1365-8501</orcidid><orcidid>https://orcid.org/0000-0002-9232-7523</orcidid><orcidid>https://orcid.org/0000-0003-2809-6158</orcidid><orcidid>https://orcid.org/0000-0001-5684-3857</orcidid><orcidid>https://orcid.org/0000-0002-3989-000X</orcidid><orcidid>https://orcid.org/0000-0001-6184-1813</orcidid><orcidid>https://orcid.org/0000-0003-1971-8613</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid></search><sort><creationdate>20210201</creationdate><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><author>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Xiaogang</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Xue, Shichuan</creatorcontrib><creatorcontrib>Ge, Renyou</creatorcontrib><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Liu, Yingwen</creatorcontrib><creatorcontrib>Huang, Anqi</creatorcontrib><creatorcontrib>Fu, Xiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yi, Teng</creatorcontrib><creatorcontrib>Xu, Fufang</creatorcontrib><creatorcontrib>Deng, Mingtang</creatorcontrib><creatorcontrib>Wang, Jingbo B</creatorcontrib><creatorcontrib>Meinecke, Jasmin D A</creatorcontrib><creatorcontrib>Matthews, Jonathan C F</creatorcontrib><creatorcontrib>Cai, Xinlun</creatorcontrib><creatorcontrib>Yang, Xuejun</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Xiaogang</au><au>Wang, Yizhi</au><au>Xue, Shichuan</au><au>Ge, Renyou</au><au>Chen, Lifeng</au><au>Liu, Yingwen</au><au>Huang, Anqi</au><au>Fu, Xiang</au><au>Xu, Ping</au><au>Yi, Teng</au><au>Xu, Fufang</au><au>Deng, Mingtang</au><au>Wang, Jingbo B</au><au>Meinecke, Jasmin D A</au><au>Matthews, Jonathan C F</au><au>Cai, Xinlun</au><au>Yang, Xuejun</au><au>Wu, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>7</volume><issue>9</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33637521</pmid><doi>10.1126/sciadv.abb8375</doi><orcidid>https://orcid.org/0000-0001-5951-8988</orcidid><orcidid>https://orcid.org/0000-0002-5544-7307</orcidid><orcidid>https://orcid.org/0000-0002-1365-8501</orcidid><orcidid>https://orcid.org/0000-0002-9232-7523</orcidid><orcidid>https://orcid.org/0000-0003-2809-6158</orcidid><orcidid>https://orcid.org/0000-0001-5684-3857</orcidid><orcidid>https://orcid.org/0000-0002-3989-000X</orcidid><orcidid>https://orcid.org/0000-0001-6184-1813</orcidid><orcidid>https://orcid.org/0000-0003-1971-8613</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-02, Vol.7 (9)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909884
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Physics
SciAdv r-articles
title Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20graph-theoretic%20quantum%20algorithms%20on%20a%20silicon%20photonic%20quantum%20walk%20processor&rft.jtitle=Science%20advances&rft.au=Qiang,%20Xiaogang&rft.date=2021-02-01&rft.volume=7&rft.issue=9&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb8375&rft_dat=%3Cproquest_pubme%3E2494305244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494305244&rft_id=info:pmid/33637521&rfr_iscdi=true