Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full co...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-02, Vol.7 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B Meinecke, Jasmin D A Matthews, Jonathan C F Cai, Xinlun Yang, Xuejun Wu, Junjie |
description | Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications. |
doi_str_mv | 10.1126/sciadv.abb8375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494305244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</originalsourceid><addsrcrecordid>eNpVUc9LwzAYDaK4MXf1KD166Uyapmsuggx_DAZe9CaEL2m6RtumS9KJ_70dm2Oe3oP3vvd9Hw-ha4JnhCTZnVcGiu0MpMzpnJ2hcTJAnLA0Pz_hIzT1_hNjTNIsY4RfohGl2aAmZIw-lk1X60a3wbTraO2gq-JQaet0MCra9NCGvomgXltnQtX4yLYRRN7URg2sq2yw7YnxG-qvqHNWae-tu0IXJdReTw84Qe9Pj2-Ll3j1-rxcPKxiRTkOcclAaowl4ZlKeEY4zVUOTBWFpLIoCOOgNNdlziDDJVWpkjoHmCsoOMg0oxN0v8_tetnoQg3fOKhF50wD7kdYMOK_0ppKrO1WzDnmeZ4OAbeHAGc3vfZBNMYrXdfQatt7kaQ8pZgl6c4621uVs947XR7XECx2rYh9K-LQyjBwc3rc0f7XAf0F_NWPQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494305244</pqid></control><display><type>article</type><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</creator><creatorcontrib>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</creatorcontrib><description>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abb8375</identifier><identifier>PMID: 33637521</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Physics ; SciAdv r-articles</subject><ispartof>Science advances, 2021-02, Vol.7 (9)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</citedby><cites>FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</cites><orcidid>0000-0001-5951-8988 ; 0000-0002-5544-7307 ; 0000-0002-1365-8501 ; 0000-0002-9232-7523 ; 0000-0003-2809-6158 ; 0000-0001-5684-3857 ; 0000-0002-3989-000X ; 0000-0001-6184-1813 ; 0000-0003-1971-8613 ; 0000-0001-7544-0084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33637521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiang, Xiaogang</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Xue, Shichuan</creatorcontrib><creatorcontrib>Ge, Renyou</creatorcontrib><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Liu, Yingwen</creatorcontrib><creatorcontrib>Huang, Anqi</creatorcontrib><creatorcontrib>Fu, Xiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yi, Teng</creatorcontrib><creatorcontrib>Xu, Fufang</creatorcontrib><creatorcontrib>Deng, Mingtang</creatorcontrib><creatorcontrib>Wang, Jingbo B</creatorcontrib><creatorcontrib>Meinecke, Jasmin D A</creatorcontrib><creatorcontrib>Matthews, Jonathan C F</creatorcontrib><creatorcontrib>Cai, Xinlun</creatorcontrib><creatorcontrib>Yang, Xuejun</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</description><subject>Physics</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUc9LwzAYDaK4MXf1KD166Uyapmsuggx_DAZe9CaEL2m6RtumS9KJ_70dm2Oe3oP3vvd9Hw-ha4JnhCTZnVcGiu0MpMzpnJ2hcTJAnLA0Pz_hIzT1_hNjTNIsY4RfohGl2aAmZIw-lk1X60a3wbTraO2gq-JQaet0MCra9NCGvomgXltnQtX4yLYRRN7URg2sq2yw7YnxG-qvqHNWae-tu0IXJdReTw84Qe9Pj2-Ll3j1-rxcPKxiRTkOcclAaowl4ZlKeEY4zVUOTBWFpLIoCOOgNNdlziDDJVWpkjoHmCsoOMg0oxN0v8_tetnoQg3fOKhF50wD7kdYMOK_0ppKrO1WzDnmeZ4OAbeHAGc3vfZBNMYrXdfQatt7kaQ8pZgl6c4621uVs947XR7XECx2rYh9K-LQyjBwc3rc0f7XAf0F_NWPQQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qiang, Xiaogang</creator><creator>Wang, Yizhi</creator><creator>Xue, Shichuan</creator><creator>Ge, Renyou</creator><creator>Chen, Lifeng</creator><creator>Liu, Yingwen</creator><creator>Huang, Anqi</creator><creator>Fu, Xiang</creator><creator>Xu, Ping</creator><creator>Yi, Teng</creator><creator>Xu, Fufang</creator><creator>Deng, Mingtang</creator><creator>Wang, Jingbo B</creator><creator>Meinecke, Jasmin D A</creator><creator>Matthews, Jonathan C F</creator><creator>Cai, Xinlun</creator><creator>Yang, Xuejun</creator><creator>Wu, Junjie</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5951-8988</orcidid><orcidid>https://orcid.org/0000-0002-5544-7307</orcidid><orcidid>https://orcid.org/0000-0002-1365-8501</orcidid><orcidid>https://orcid.org/0000-0002-9232-7523</orcidid><orcidid>https://orcid.org/0000-0003-2809-6158</orcidid><orcidid>https://orcid.org/0000-0001-5684-3857</orcidid><orcidid>https://orcid.org/0000-0002-3989-000X</orcidid><orcidid>https://orcid.org/0000-0001-6184-1813</orcidid><orcidid>https://orcid.org/0000-0003-1971-8613</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid></search><sort><creationdate>20210201</creationdate><title>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</title><author>Qiang, Xiaogang ; Wang, Yizhi ; Xue, Shichuan ; Ge, Renyou ; Chen, Lifeng ; Liu, Yingwen ; Huang, Anqi ; Fu, Xiang ; Xu, Ping ; Yi, Teng ; Xu, Fufang ; Deng, Mingtang ; Wang, Jingbo B ; Meinecke, Jasmin D A ; Matthews, Jonathan C F ; Cai, Xinlun ; Yang, Xuejun ; Wu, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f5abe00b196c2961938c8a5cddb3bdd159ace9ef85a60f3c4cbe8aa7cad9ab463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Xiaogang</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Xue, Shichuan</creatorcontrib><creatorcontrib>Ge, Renyou</creatorcontrib><creatorcontrib>Chen, Lifeng</creatorcontrib><creatorcontrib>Liu, Yingwen</creatorcontrib><creatorcontrib>Huang, Anqi</creatorcontrib><creatorcontrib>Fu, Xiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yi, Teng</creatorcontrib><creatorcontrib>Xu, Fufang</creatorcontrib><creatorcontrib>Deng, Mingtang</creatorcontrib><creatorcontrib>Wang, Jingbo B</creatorcontrib><creatorcontrib>Meinecke, Jasmin D A</creatorcontrib><creatorcontrib>Matthews, Jonathan C F</creatorcontrib><creatorcontrib>Cai, Xinlun</creatorcontrib><creatorcontrib>Yang, Xuejun</creatorcontrib><creatorcontrib>Wu, Junjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Xiaogang</au><au>Wang, Yizhi</au><au>Xue, Shichuan</au><au>Ge, Renyou</au><au>Chen, Lifeng</au><au>Liu, Yingwen</au><au>Huang, Anqi</au><au>Fu, Xiang</au><au>Xu, Ping</au><au>Yi, Teng</au><au>Xu, Fufang</au><au>Deng, Mingtang</au><au>Wang, Jingbo B</au><au>Meinecke, Jasmin D A</au><au>Matthews, Jonathan C F</au><au>Cai, Xinlun</au><au>Yang, Xuejun</au><au>Wu, Junjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>7</volume><issue>9</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33637521</pmid><doi>10.1126/sciadv.abb8375</doi><orcidid>https://orcid.org/0000-0001-5951-8988</orcidid><orcidid>https://orcid.org/0000-0002-5544-7307</orcidid><orcidid>https://orcid.org/0000-0002-1365-8501</orcidid><orcidid>https://orcid.org/0000-0002-9232-7523</orcidid><orcidid>https://orcid.org/0000-0003-2809-6158</orcidid><orcidid>https://orcid.org/0000-0001-5684-3857</orcidid><orcidid>https://orcid.org/0000-0002-3989-000X</orcidid><orcidid>https://orcid.org/0000-0001-6184-1813</orcidid><orcidid>https://orcid.org/0000-0003-1971-8613</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-02, Vol.7 (9) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909884 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Physics SciAdv r-articles |
title | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20graph-theoretic%20quantum%20algorithms%20on%20a%20silicon%20photonic%20quantum%20walk%20processor&rft.jtitle=Science%20advances&rft.au=Qiang,%20Xiaogang&rft.date=2021-02-01&rft.volume=7&rft.issue=9&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abb8375&rft_dat=%3Cproquest_pubme%3E2494305244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494305244&rft_id=info:pmid/33637521&rfr_iscdi=true |