A quest to identify suitable organic tracers for estimating children’s dust ingestion rates

Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of exposure science & environmental epidemiology 2021-02, Vol.31 (1), p.70-81
Hauptverfasser: Panagopoulos Abrahamsson, Dimitri, Sobus, Jon R., Ulrich, Elin M., Isaacs, Kristin, Moschet, Christoph, Young, Thomas M., Bennett, Deborah H., Tulve, Nicolle S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 70
container_title Journal of exposure science & environmental epidemiology
container_volume 31
creator Panagopoulos Abrahamsson, Dimitri
Sobus, Jon R.
Ulrich, Elin M.
Isaacs, Kristin
Moschet, Christoph
Young, Thomas M.
Bennett, Deborah H.
Tulve, Nicolle S.
description Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that could be used as tracers to calculate children’s dust ingestion rates. We proposed a set of criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) have available or obtainable ADME information for biomarker-based exposure reconstruction. To identify compounds meeting these four criteria, we developed a workflow that encompasses non-targeted analysis approaches, literature and database searching, and multimedia modeling. We then implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our criteria (using one small, publicly available dataset to show proof of concept). Initially, five chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous manual investigation raised many questions about the applicability of these chemicals as tracers. Based on the results of this initial pilot study, no individual compounds can be unequivocally considered suitable tracers for calculating dust ingestion rates. Future work must therefore consider larger datasets, generated from broader measurement studies and literature searches, as well as refinements to selection criteria, to identify robust and defensible tracer compounds.
doi_str_mv 10.1038/s41370-020-0244-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650174321</galeid><sourcerecordid>A650174321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-3befd44613ff554e38f84ecbf701ba5b512da5c83999826309d16fa0fe54e01c3</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoMotlYfwBsJCL2bejJJ5s-NsBT_QcEbBW8kZDLJbspsUpNMoXe-Rl_PJ_GMW7ddUIZhQs7vfJzzzUfISwZnDHj3JgvGW6igXl4hKnhEjpmUfQWN-PZ4f-bsiDzL-RJAiLaBp-SI103DOJfH5PuK_phtLrRE6kcbinc3NM--6GGyNKa1Dt7QkrSxKVMXE0XYb3XxYU3Nxk9jsuHXz9tMxxlV8Hapx0CTLjY_J0-cnrJ9cfc9IV_fv_ty_rG6-Pzh0_nqojKy6UrFB-tGIXAk56QUlneuE9YMrgU2aDlIVo9amo73fd_VDYd-ZI3T4CzCwAw_IW93ulfzsLWjwT2SntRVwknTjYraq8NK8Bu1jteq7aEHaFHg9Z1Ain_8UJdxTgFnVvXimWhxrntqrSerfHBxMWbrs1GrRgJrBa8ZUmf_oPAZ7dabGKzzeH_QcPqgYWP1VDY5TvPiYz4E2Q40KeacrNtvyEAtiVC7RChMhFoSoQB7Xj20Zt_xNwII1DsgYwl_X7pf_f-qvwGeaMGf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476047554</pqid></control><display><type>article</type><title>A quest to identify suitable organic tracers for estimating children’s dust ingestion rates</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Panagopoulos Abrahamsson, Dimitri ; Sobus, Jon R. ; Ulrich, Elin M. ; Isaacs, Kristin ; Moschet, Christoph ; Young, Thomas M. ; Bennett, Deborah H. ; Tulve, Nicolle S.</creator><creatorcontrib>Panagopoulos Abrahamsson, Dimitri ; Sobus, Jon R. ; Ulrich, Elin M. ; Isaacs, Kristin ; Moschet, Christoph ; Young, Thomas M. ; Bennett, Deborah H. ; Tulve, Nicolle S.</creatorcontrib><description>Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that could be used as tracers to calculate children’s dust ingestion rates. We proposed a set of criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) have available or obtainable ADME information for biomarker-based exposure reconstruction. To identify compounds meeting these four criteria, we developed a workflow that encompasses non-targeted analysis approaches, literature and database searching, and multimedia modeling. We then implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our criteria (using one small, publicly available dataset to show proof of concept). Initially, five chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous manual investigation raised many questions about the applicability of these chemicals as tracers. Based on the results of this initial pilot study, no individual compounds can be unequivocally considered suitable tracers for calculating dust ingestion rates. Future work must therefore consider larger datasets, generated from broader measurement studies and literature searches, as well as refinements to selection criteria, to identify robust and defensible tracer compounds.</description><identifier>ISSN: 1559-0631</identifier><identifier>EISSN: 1559-064X</identifier><identifier>DOI: 10.1038/s41370-020-0244-0</identifier><identifier>PMID: 32661335</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Biological properties ; Biological samples ; Biomarkers ; Chemicals ; Child ; Children ; Criteria ; Database searching ; Datasets ; Diesters ; Dust ; Dust - analysis ; Eating ; Environmental Exposure - analysis ; Environmental Monitoring ; Epidemiology ; Exposure ; Health aspects ; Humans ; Identification and classification ; Ingestion ; Leucine ; Literature reviews ; Medical research ; Medicine ; Medicine &amp; Public Health ; Medicine, Experimental ; Multimedia ; Organic chemicals ; Organic chemistry ; Organophosphates ; Pilot Projects ; Piperine ; Regulators ; Tracers ; Tracers (Chemistry) ; Workflow</subject><ispartof>Journal of exposure science &amp; environmental epidemiology, 2021-02, Vol.31 (1), p.70-81</ispartof><rights>US Govt 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>US Govt 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-3befd44613ff554e38f84ecbf701ba5b512da5c83999826309d16fa0fe54e01c3</citedby><cites>FETCH-LOGICAL-c568t-3befd44613ff554e38f84ecbf701ba5b512da5c83999826309d16fa0fe54e01c3</cites><orcidid>0000-0001-9722-039X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41370-020-0244-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41370-020-0244-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32661335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panagopoulos Abrahamsson, Dimitri</creatorcontrib><creatorcontrib>Sobus, Jon R.</creatorcontrib><creatorcontrib>Ulrich, Elin M.</creatorcontrib><creatorcontrib>Isaacs, Kristin</creatorcontrib><creatorcontrib>Moschet, Christoph</creatorcontrib><creatorcontrib>Young, Thomas M.</creatorcontrib><creatorcontrib>Bennett, Deborah H.</creatorcontrib><creatorcontrib>Tulve, Nicolle S.</creatorcontrib><title>A quest to identify suitable organic tracers for estimating children’s dust ingestion rates</title><title>Journal of exposure science &amp; environmental epidemiology</title><addtitle>J Expo Sci Environ Epidemiol</addtitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><description>Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that could be used as tracers to calculate children’s dust ingestion rates. We proposed a set of criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) have available or obtainable ADME information for biomarker-based exposure reconstruction. To identify compounds meeting these four criteria, we developed a workflow that encompasses non-targeted analysis approaches, literature and database searching, and multimedia modeling. We then implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our criteria (using one small, publicly available dataset to show proof of concept). Initially, five chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous manual investigation raised many questions about the applicability of these chemicals as tracers. Based on the results of this initial pilot study, no individual compounds can be unequivocally considered suitable tracers for calculating dust ingestion rates. Future work must therefore consider larger datasets, generated from broader measurement studies and literature searches, as well as refinements to selection criteria, to identify robust and defensible tracer compounds.</description><subject>Biological properties</subject><subject>Biological samples</subject><subject>Biomarkers</subject><subject>Chemicals</subject><subject>Child</subject><subject>Children</subject><subject>Criteria</subject><subject>Database searching</subject><subject>Datasets</subject><subject>Diesters</subject><subject>Dust</subject><subject>Dust - analysis</subject><subject>Eating</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Monitoring</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Ingestion</subject><subject>Leucine</subject><subject>Literature reviews</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Medicine, Experimental</subject><subject>Multimedia</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Organophosphates</subject><subject>Pilot Projects</subject><subject>Piperine</subject><subject>Regulators</subject><subject>Tracers</subject><subject>Tracers (Chemistry)</subject><subject>Workflow</subject><issn>1559-0631</issn><issn>1559-064X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kt9qFDEUxoMotlYfwBsJCL2bejJJ5s-NsBT_QcEbBW8kZDLJbspsUpNMoXe-Rl_PJ_GMW7ddUIZhQs7vfJzzzUfISwZnDHj3JgvGW6igXl4hKnhEjpmUfQWN-PZ4f-bsiDzL-RJAiLaBp-SI103DOJfH5PuK_phtLrRE6kcbinc3NM--6GGyNKa1Dt7QkrSxKVMXE0XYb3XxYU3Nxk9jsuHXz9tMxxlV8Hapx0CTLjY_J0-cnrJ9cfc9IV_fv_ty_rG6-Pzh0_nqojKy6UrFB-tGIXAk56QUlneuE9YMrgU2aDlIVo9amo73fd_VDYd-ZI3T4CzCwAw_IW93ulfzsLWjwT2SntRVwknTjYraq8NK8Bu1jteq7aEHaFHg9Z1Ain_8UJdxTgFnVvXimWhxrntqrSerfHBxMWbrs1GrRgJrBa8ZUmf_oPAZ7dabGKzzeH_QcPqgYWP1VDY5TvPiYz4E2Q40KeacrNtvyEAtiVC7RChMhFoSoQB7Xj20Zt_xNwII1DsgYwl_X7pf_f-qvwGeaMGf</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Panagopoulos Abrahamsson, Dimitri</creator><creator>Sobus, Jon R.</creator><creator>Ulrich, Elin M.</creator><creator>Isaacs, Kristin</creator><creator>Moschet, Christoph</creator><creator>Young, Thomas M.</creator><creator>Bennett, Deborah H.</creator><creator>Tulve, Nicolle S.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7T2</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9722-039X</orcidid></search><sort><creationdate>20210201</creationdate><title>A quest to identify suitable organic tracers for estimating children’s dust ingestion rates</title><author>Panagopoulos Abrahamsson, Dimitri ; Sobus, Jon R. ; Ulrich, Elin M. ; Isaacs, Kristin ; Moschet, Christoph ; Young, Thomas M. ; Bennett, Deborah H. ; Tulve, Nicolle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-3befd44613ff554e38f84ecbf701ba5b512da5c83999826309d16fa0fe54e01c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological properties</topic><topic>Biological samples</topic><topic>Biomarkers</topic><topic>Chemicals</topic><topic>Child</topic><topic>Children</topic><topic>Criteria</topic><topic>Database searching</topic><topic>Datasets</topic><topic>Diesters</topic><topic>Dust</topic><topic>Dust - analysis</topic><topic>Eating</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Monitoring</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Ingestion</topic><topic>Leucine</topic><topic>Literature reviews</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Medicine, Experimental</topic><topic>Multimedia</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Organophosphates</topic><topic>Pilot Projects</topic><topic>Piperine</topic><topic>Regulators</topic><topic>Tracers</topic><topic>Tracers (Chemistry)</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panagopoulos Abrahamsson, Dimitri</creatorcontrib><creatorcontrib>Sobus, Jon R.</creatorcontrib><creatorcontrib>Ulrich, Elin M.</creatorcontrib><creatorcontrib>Isaacs, Kristin</creatorcontrib><creatorcontrib>Moschet, Christoph</creatorcontrib><creatorcontrib>Young, Thomas M.</creatorcontrib><creatorcontrib>Bennett, Deborah H.</creatorcontrib><creatorcontrib>Tulve, Nicolle S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of exposure science &amp; environmental epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panagopoulos Abrahamsson, Dimitri</au><au>Sobus, Jon R.</au><au>Ulrich, Elin M.</au><au>Isaacs, Kristin</au><au>Moschet, Christoph</au><au>Young, Thomas M.</au><au>Bennett, Deborah H.</au><au>Tulve, Nicolle S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quest to identify suitable organic tracers for estimating children’s dust ingestion rates</atitle><jtitle>Journal of exposure science &amp; environmental epidemiology</jtitle><stitle>J Expo Sci Environ Epidemiol</stitle><addtitle>J Expo Sci Environ Epidemiol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>1559-0631</issn><eissn>1559-064X</eissn><abstract>Chemical exposure via dust ingestion is of great interest to researchers and regulators because children are exposed to dust through their daily activities, and as a result, to the many chemicals contained within dust. Our goal was to develop a workflow to identify and rank organic chemicals that could be used as tracers to calculate children’s dust ingestion rates. We proposed a set of criteria for a chemical to be considered a promising tracer. The best tracers must be (1) ubiquitous in dust, (2) unique to dust, (3) detectable as biomarkers in accessible biological samples, and (4) have available or obtainable ADME information for biomarker-based exposure reconstruction. To identify compounds meeting these four criteria, we developed a workflow that encompasses non-targeted analysis approaches, literature and database searching, and multimedia modeling. We then implemented an ad hoc grading system and ranked candidate chemicals based on fulfillment of our criteria (using one small, publicly available dataset to show proof of concept). Initially, five chemicals (1,3-diphenylguanidine, leucine, piperine, 6:2/8:2 fluorotelomer phosphate diester, 6:2 fluorotelomer phosphate diester) appeared to satisfy many of our criteria. However, a rigorous manual investigation raised many questions about the applicability of these chemicals as tracers. Based on the results of this initial pilot study, no individual compounds can be unequivocally considered suitable tracers for calculating dust ingestion rates. Future work must therefore consider larger datasets, generated from broader measurement studies and literature searches, as well as refinements to selection criteria, to identify robust and defensible tracer compounds.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32661335</pmid><doi>10.1038/s41370-020-0244-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9722-039X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-0631
ispartof Journal of exposure science & environmental epidemiology, 2021-02, Vol.31 (1), p.70-81
issn 1559-0631
1559-064X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7909007
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biological properties
Biological samples
Biomarkers
Chemicals
Child
Children
Criteria
Database searching
Datasets
Diesters
Dust
Dust - analysis
Eating
Environmental Exposure - analysis
Environmental Monitoring
Epidemiology
Exposure
Health aspects
Humans
Identification and classification
Ingestion
Leucine
Literature reviews
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Multimedia
Organic chemicals
Organic chemistry
Organophosphates
Pilot Projects
Piperine
Regulators
Tracers
Tracers (Chemistry)
Workflow
title A quest to identify suitable organic tracers for estimating children’s dust ingestion rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quest%20to%20identify%20suitable%20organic%20tracers%20for%20estimating%20children%E2%80%99s%20dust%20ingestion%20rates&rft.jtitle=Journal%20of%20exposure%20science%20&%20environmental%20epidemiology&rft.au=Panagopoulos%20Abrahamsson,%20Dimitri&rft.date=2021-02-01&rft.volume=31&rft.issue=1&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=1559-0631&rft.eissn=1559-064X&rft_id=info:doi/10.1038/s41370-020-0244-0&rft_dat=%3Cgale_pubme%3EA650174321%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476047554&rft_id=info:pmid/32661335&rft_galeid=A650174321&rfr_iscdi=true