Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency

Spinal muscular atrophy (SMA) is a motor neuron disorder caused by the absence of a functional survival of motor neuron 1, telomeric (SMN1) gene. Type I SMA, a lethal disease of infancy, accounts for the majority of cases. Newborn blood spot screening (NBS) to detect severe combined immunodeficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2015-02, Vol.61 (2), p.412-419
Hauptverfasser: Taylor, Jennifer L, Lee, Francis K, Yazdanpanah, Golriz Khadem, Staropoli, John F, Liu, Mei, Carulli, John P, Sun, Chao, Dobrowolski, Steven F, Hannon, W Harry, Vogt, Robert F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2
container_start_page 412
container_title Clinical chemistry (Baltimore, Md.)
container_volume 61
creator Taylor, Jennifer L
Lee, Francis K
Yazdanpanah, Golriz Khadem
Staropoli, John F
Liu, Mei
Carulli, John P
Sun, Chao
Dobrowolski, Steven F
Hannon, W Harry
Vogt, Robert F
description Spinal muscular atrophy (SMA) is a motor neuron disorder caused by the absence of a functional survival of motor neuron 1, telomeric (SMN1) gene. Type I SMA, a lethal disease of infancy, accounts for the majority of cases. Newborn blood spot screening (NBS) to detect severe combined immunodeficiency (SCID) has been implemented in public health laboratories in the last 5 years. SCID detection is based on real-time PCR assays to measure T-cell receptor excision circles (TREC), a byproduct of T-cell development. We modified a multiplexed real-time PCR TREC assay to simultaneously determine the presence or absence of the SMN1 gene from a dried blood spot (DBS) punch in a single reaction well. An SMN1 assay using a locked nucleic acid probe was initially developed with cell culture and umbilical cord blood (UCB) DNA extracts, and then integrated into the TREC assay. DBS punches were placed in 96-well arrays, washed, and amplified directly using reagents specific for TREC, a reference gene [ribonuclease P/MRP 30kDa subunit (RPP30)], and the SMN1 gene. The assay was tested on DBS made from UCB units and from peripheral blood samples of SMA-affected individuals and their family members. DBS made from SMA-affected individuals showed no SMN1-specific amplification, whereas DBS made from all unaffected carriers and UCB showed SMN1 amplification above a well-defined threshold. TREC and RPP30 content in all DBS were within the age-adjusted expected range. SMA caused by the absence of SMN1 can be detected from the same DBS punch used to screen newborns for SCID.
doi_str_mv 10.1373/clinchem.2014.231019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7906865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617882951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-98316967f8379bbc8df24bdceecf02ecbe92a33b8f24e0ed9a3784828ef3459d3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS0EokPhDRCyxIZNBv_Eib1BQiMKSBUgBGvLcW46rhw72ElhnoWXraOZVsCGlX_uOd-1rw5CzynZUt7y19a7YPcwbhmh9ZZxSqh6gDZUcFJJ0dCHaEMIUZWidXuGnuR8XY51K5vH6IwJQRiVbIN-f4KfXUwBdz7GHucpzjjbBBBcuMIz5Bkved2Oi5_d5OEX9DiB8dXsRsBfdl_xHHF2a9kEiEv2hxMADzEVoAvGF3e2izcJmznFaX_AJpRmcAMJsI1j50LBunFcQuxhcNZBsIen6NFgfIZnp_Ucfb949233obr8_P7j7u1lZQUXc6Ukp41q2kHyVnWdlf3A6q63AHYgDGwHihnOO1mugUCvDG9lLZmEgddC9fwcvTlyp6UboRjDnIzXU3KjSQcdjdN_V4Lb66t4o1tFGtmIAnh1AqT4Yykz06PLFrw_TkRTyRmrG8LZ_6WNYDUjnKzSl_9Ir-OSyjRXVUMLkkpSVPVRZVPMOcFw_25K9BoUfRcUvQZFH4NSbC_-_PO96S4Z_Ba0UMDF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661322180</pqid></control><display><type>article</type><title>Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency</title><source>MEDLINE</source><source>Oxford University Press Journals Current</source><creator>Taylor, Jennifer L ; Lee, Francis K ; Yazdanpanah, Golriz Khadem ; Staropoli, John F ; Liu, Mei ; Carulli, John P ; Sun, Chao ; Dobrowolski, Steven F ; Hannon, W Harry ; Vogt, Robert F</creator><creatorcontrib>Taylor, Jennifer L ; Lee, Francis K ; Yazdanpanah, Golriz Khadem ; Staropoli, John F ; Liu, Mei ; Carulli, John P ; Sun, Chao ; Dobrowolski, Steven F ; Hannon, W Harry ; Vogt, Robert F</creatorcontrib><description>Spinal muscular atrophy (SMA) is a motor neuron disorder caused by the absence of a functional survival of motor neuron 1, telomeric (SMN1) gene. Type I SMA, a lethal disease of infancy, accounts for the majority of cases. Newborn blood spot screening (NBS) to detect severe combined immunodeficiency (SCID) has been implemented in public health laboratories in the last 5 years. SCID detection is based on real-time PCR assays to measure T-cell receptor excision circles (TREC), a byproduct of T-cell development. We modified a multiplexed real-time PCR TREC assay to simultaneously determine the presence or absence of the SMN1 gene from a dried blood spot (DBS) punch in a single reaction well. An SMN1 assay using a locked nucleic acid probe was initially developed with cell culture and umbilical cord blood (UCB) DNA extracts, and then integrated into the TREC assay. DBS punches were placed in 96-well arrays, washed, and amplified directly using reagents specific for TREC, a reference gene [ribonuclease P/MRP 30kDa subunit (RPP30)], and the SMN1 gene. The assay was tested on DBS made from UCB units and from peripheral blood samples of SMA-affected individuals and their family members. DBS made from SMA-affected individuals showed no SMN1-specific amplification, whereas DBS made from all unaffected carriers and UCB showed SMN1 amplification above a well-defined threshold. TREC and RPP30 content in all DBS were within the age-adjusted expected range. SMA caused by the absence of SMN1 can be detected from the same DBS punch used to screen newborns for SCID.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1373/clinchem.2014.231019</identifier><identifier>PMID: 25502182</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adolescent ; Adult ; Age ; Child ; Child, Preschool ; Clinical trials ; Deoxyribonucleic acid ; DNA ; DNA - blood ; DNA - genetics ; Dried Blood Spot Testing - methods ; Genes ; Genetic Testing - methods ; Humans ; Infant ; Infant, Newborn ; Medical laboratories ; Methods ; Middle Aged ; Muscular Atrophy, Spinal - blood ; Muscular Atrophy, Spinal - diagnosis ; Muscular Atrophy, Spinal - genetics ; Newborn babies ; Nucleic acids ; Proteins ; Public health ; Reagents ; Real-Time Polymerase Chain Reaction - methods ; Receptors, Antigen, T-Cell - genetics ; Severe Combined Immunodeficiency - blood ; Severe Combined Immunodeficiency - diagnosis ; Severe Combined Immunodeficiency - genetics ; Survival of Motor Neuron 1 Protein - blood ; Survival of Motor Neuron 1 Protein - genetics ; Young Adult</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2015-02, Vol.61 (2), p.412-419</ispartof><rights>2014 American Association for Clinical Chemistry.</rights><rights>Copyright American Association for Clinical Chemistry Feb 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-98316967f8379bbc8df24bdceecf02ecbe92a33b8f24e0ed9a3784828ef3459d3</citedby><cites>FETCH-LOGICAL-c535t-98316967f8379bbc8df24bdceecf02ecbe92a33b8f24e0ed9a3784828ef3459d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25502182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Jennifer L</creatorcontrib><creatorcontrib>Lee, Francis K</creatorcontrib><creatorcontrib>Yazdanpanah, Golriz Khadem</creatorcontrib><creatorcontrib>Staropoli, John F</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Carulli, John P</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Hannon, W Harry</creatorcontrib><creatorcontrib>Vogt, Robert F</creatorcontrib><title>Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>Spinal muscular atrophy (SMA) is a motor neuron disorder caused by the absence of a functional survival of motor neuron 1, telomeric (SMN1) gene. Type I SMA, a lethal disease of infancy, accounts for the majority of cases. Newborn blood spot screening (NBS) to detect severe combined immunodeficiency (SCID) has been implemented in public health laboratories in the last 5 years. SCID detection is based on real-time PCR assays to measure T-cell receptor excision circles (TREC), a byproduct of T-cell development. We modified a multiplexed real-time PCR TREC assay to simultaneously determine the presence or absence of the SMN1 gene from a dried blood spot (DBS) punch in a single reaction well. An SMN1 assay using a locked nucleic acid probe was initially developed with cell culture and umbilical cord blood (UCB) DNA extracts, and then integrated into the TREC assay. DBS punches were placed in 96-well arrays, washed, and amplified directly using reagents specific for TREC, a reference gene [ribonuclease P/MRP 30kDa subunit (RPP30)], and the SMN1 gene. The assay was tested on DBS made from UCB units and from peripheral blood samples of SMA-affected individuals and their family members. DBS made from SMA-affected individuals showed no SMN1-specific amplification, whereas DBS made from all unaffected carriers and UCB showed SMN1 amplification above a well-defined threshold. TREC and RPP30 content in all DBS were within the age-adjusted expected range. SMA caused by the absence of SMN1 can be detected from the same DBS punch used to screen newborns for SCID.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Clinical trials</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - blood</subject><subject>DNA - genetics</subject><subject>Dried Blood Spot Testing - methods</subject><subject>Genes</subject><subject>Genetic Testing - methods</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Medical laboratories</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Muscular Atrophy, Spinal - blood</subject><subject>Muscular Atrophy, Spinal - diagnosis</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Newborn babies</subject><subject>Nucleic acids</subject><subject>Proteins</subject><subject>Public health</subject><subject>Reagents</subject><subject>Real-Time Polymerase Chain Reaction - methods</subject><subject>Receptors, Antigen, T-Cell - genetics</subject><subject>Severe Combined Immunodeficiency - blood</subject><subject>Severe Combined Immunodeficiency - diagnosis</subject><subject>Severe Combined Immunodeficiency - genetics</subject><subject>Survival of Motor Neuron 1 Protein - blood</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Young Adult</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1u1DAUhS0EokPhDRCyxIZNBv_Eib1BQiMKSBUgBGvLcW46rhw72ElhnoWXraOZVsCGlX_uOd-1rw5CzynZUt7y19a7YPcwbhmh9ZZxSqh6gDZUcFJJ0dCHaEMIUZWidXuGnuR8XY51K5vH6IwJQRiVbIN-f4KfXUwBdz7GHucpzjjbBBBcuMIz5Bkved2Oi5_d5OEX9DiB8dXsRsBfdl_xHHF2a9kEiEv2hxMADzEVoAvGF3e2izcJmznFaX_AJpRmcAMJsI1j50LBunFcQuxhcNZBsIen6NFgfIZnp_Ucfb949233obr8_P7j7u1lZQUXc6Ukp41q2kHyVnWdlf3A6q63AHYgDGwHihnOO1mugUCvDG9lLZmEgddC9fwcvTlyp6UboRjDnIzXU3KjSQcdjdN_V4Lb66t4o1tFGtmIAnh1AqT4Yykz06PLFrw_TkRTyRmrG8LZ_6WNYDUjnKzSl_9Ir-OSyjRXVUMLkkpSVPVRZVPMOcFw_25K9BoUfRcUvQZFH4NSbC_-_PO96S4Z_Ba0UMDF</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Taylor, Jennifer L</creator><creator>Lee, Francis K</creator><creator>Yazdanpanah, Golriz Khadem</creator><creator>Staropoli, John F</creator><creator>Liu, Mei</creator><creator>Carulli, John P</creator><creator>Sun, Chao</creator><creator>Dobrowolski, Steven F</creator><creator>Hannon, W Harry</creator><creator>Vogt, Robert F</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency</title><author>Taylor, Jennifer L ; Lee, Francis K ; Yazdanpanah, Golriz Khadem ; Staropoli, John F ; Liu, Mei ; Carulli, John P ; Sun, Chao ; Dobrowolski, Steven F ; Hannon, W Harry ; Vogt, Robert F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-98316967f8379bbc8df24bdceecf02ecbe92a33b8f24e0ed9a3784828ef3459d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Clinical trials</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - blood</topic><topic>DNA - genetics</topic><topic>Dried Blood Spot Testing - methods</topic><topic>Genes</topic><topic>Genetic Testing - methods</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Medical laboratories</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Muscular Atrophy, Spinal - blood</topic><topic>Muscular Atrophy, Spinal - diagnosis</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Newborn babies</topic><topic>Nucleic acids</topic><topic>Proteins</topic><topic>Public health</topic><topic>Reagents</topic><topic>Real-Time Polymerase Chain Reaction - methods</topic><topic>Receptors, Antigen, T-Cell - genetics</topic><topic>Severe Combined Immunodeficiency - blood</topic><topic>Severe Combined Immunodeficiency - diagnosis</topic><topic>Severe Combined Immunodeficiency - genetics</topic><topic>Survival of Motor Neuron 1 Protein - blood</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Jennifer L</creatorcontrib><creatorcontrib>Lee, Francis K</creatorcontrib><creatorcontrib>Yazdanpanah, Golriz Khadem</creatorcontrib><creatorcontrib>Staropoli, John F</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Carulli, John P</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Hannon, W Harry</creatorcontrib><creatorcontrib>Vogt, Robert F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Jennifer L</au><au>Lee, Francis K</au><au>Yazdanpanah, Golriz Khadem</au><au>Staropoli, John F</au><au>Liu, Mei</au><au>Carulli, John P</au><au>Sun, Chao</au><au>Dobrowolski, Steven F</au><au>Hannon, W Harry</au><au>Vogt, Robert F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>61</volume><issue>2</issue><spage>412</spage><epage>419</epage><pages>412-419</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><abstract>Spinal muscular atrophy (SMA) is a motor neuron disorder caused by the absence of a functional survival of motor neuron 1, telomeric (SMN1) gene. Type I SMA, a lethal disease of infancy, accounts for the majority of cases. Newborn blood spot screening (NBS) to detect severe combined immunodeficiency (SCID) has been implemented in public health laboratories in the last 5 years. SCID detection is based on real-time PCR assays to measure T-cell receptor excision circles (TREC), a byproduct of T-cell development. We modified a multiplexed real-time PCR TREC assay to simultaneously determine the presence or absence of the SMN1 gene from a dried blood spot (DBS) punch in a single reaction well. An SMN1 assay using a locked nucleic acid probe was initially developed with cell culture and umbilical cord blood (UCB) DNA extracts, and then integrated into the TREC assay. DBS punches were placed in 96-well arrays, washed, and amplified directly using reagents specific for TREC, a reference gene [ribonuclease P/MRP 30kDa subunit (RPP30)], and the SMN1 gene. The assay was tested on DBS made from UCB units and from peripheral blood samples of SMA-affected individuals and their family members. DBS made from SMA-affected individuals showed no SMN1-specific amplification, whereas DBS made from all unaffected carriers and UCB showed SMN1 amplification above a well-defined threshold. TREC and RPP30 content in all DBS were within the age-adjusted expected range. SMA caused by the absence of SMN1 can be detected from the same DBS punch used to screen newborns for SCID.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25502182</pmid><doi>10.1373/clinchem.2014.231019</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2015-02, Vol.61 (2), p.412-419
issn 0009-9147
1530-8561
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7906865
source MEDLINE; Oxford University Press Journals Current
subjects Adolescent
Adult
Age
Child
Child, Preschool
Clinical trials
Deoxyribonucleic acid
DNA
DNA - blood
DNA - genetics
Dried Blood Spot Testing - methods
Genes
Genetic Testing - methods
Humans
Infant
Infant, Newborn
Medical laboratories
Methods
Middle Aged
Muscular Atrophy, Spinal - blood
Muscular Atrophy, Spinal - diagnosis
Muscular Atrophy, Spinal - genetics
Newborn babies
Nucleic acids
Proteins
Public health
Reagents
Real-Time Polymerase Chain Reaction - methods
Receptors, Antigen, T-Cell - genetics
Severe Combined Immunodeficiency - blood
Severe Combined Immunodeficiency - diagnosis
Severe Combined Immunodeficiency - genetics
Survival of Motor Neuron 1 Protein - blood
Survival of Motor Neuron 1 Protein - genetics
Young Adult
title Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Newborn%20blood%20spot%20screening%20test%20using%20multiplexed%20real-time%20PCR%20to%20simultaneously%20screen%20for%20spinal%20muscular%20atrophy%20and%20severe%20combined%20immunodeficiency&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Taylor,%20Jennifer%20L&rft.date=2015-02-01&rft.volume=61&rft.issue=2&rft.spage=412&rft.epage=419&rft.pages=412-419&rft.issn=0009-9147&rft.eissn=1530-8561&rft_id=info:doi/10.1373/clinchem.2014.231019&rft_dat=%3Cproquest_pubme%3E3617882951%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661322180&rft_id=info:pmid/25502182&rfr_iscdi=true