Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts

•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase locali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mitochondrion 2021-03, Vol.57, p.88-96
Hauptverfasser: Garcia, Iraselia, Calderon, Fredy, la Torre, Patrick De, Vallier, Shaynah St, Rodriguez, Cristobal, Agarwala, Divya, Keniry, Megan, Innis-Whitehouse, Wendy, Gilkerson, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 88
container_title Mitochondrion
container_volume 57
creator Garcia, Iraselia
Calderon, Fredy
la Torre, Patrick De
Vallier, Shaynah St
Rodriguez, Cristobal
Agarwala, Divya
Keniry, Megan
Innis-Whitehouse, Wendy
Gilkerson, Robert
description •Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.
doi_str_mv 10.1016/j.mito.2020.12.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567724920302300</els_id><sourcerecordid>2474501327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAhyQj1yy2JM4diSEVFVAKxWVA1yxJvak9SqJi52NtG-PV9tWcOHkkf3P59F8jL2VYiOFbD9sN1NY4gYElAvYCKGfsVNpNFQGtHleatXqSkPTnbBXOW-FkFoCvGQndV2bWipzyn59Kwh3F2efAo785vu55G4kXPGWeMg80Uoph37cc3RLWHEhz_s992EYKNG8BFxCnHkc-GXngDtMPsRpH_sR85JfsxcDjpnePJxn7OeXzz8uLqvrm69XF-fXlWuUWiqvCdHUvqceOtm0SiKC7IzpG6GcUMIM2jTUtzUZ7FowRC0I4zvjFGll6jP26ci93_UTeVcGSzja-xQmTHsbMdh_X-ZwZ2_janUnmlZCAbx_AKT4e0d5sVPIjsYRZ4q7bKHRjRKyBl2icIy6FHNONDx9I4U9iLFbexBjD2KsBFvElKZ3fw_41PJoogQ-HgNU1rQGSja7QLMjHxK5xfoY_sf_AwEUoO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474501327</pqid></control><display><type>article</type><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</creator><creatorcontrib>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</creatorcontrib><description>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</description><identifier>ISSN: 1567-7249</identifier><identifier>ISSN: 1872-8278</identifier><identifier>EISSN: 1872-8278</identifier><identifier>DOI: 10.1016/j.mito.2020.12.007</identifier><identifier>PMID: 33383158</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Apoptosis ; Cardiac ; Cell Differentiation ; Cell Line, Tumor ; Cultured cell ; Differentiation ; GTP Phosphohydrolases - metabolism ; Humans ; Membrane Potentials ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Mice ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondrial Membranes - metabolism ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; OMA1 ; OPA1 ; Rats ; Tretinoin - pharmacology</subject><ispartof>Mitochondrion, 2021-03, Vol.57, p.88-96</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</citedby><cites>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</cites><orcidid>0000-0002-5725-6627 ; 0000-0001-9379-3350 ; 0000-0001-5560-9823 ; 0000-0002-9066-5502 ; 0000-0003-1836-1923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mito.2020.12.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33383158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Iraselia</creatorcontrib><creatorcontrib>Calderon, Fredy</creatorcontrib><creatorcontrib>la Torre, Patrick De</creatorcontrib><creatorcontrib>Vallier, Shaynah St</creatorcontrib><creatorcontrib>Rodriguez, Cristobal</creatorcontrib><creatorcontrib>Agarwala, Divya</creatorcontrib><creatorcontrib>Keniry, Megan</creatorcontrib><creatorcontrib>Innis-Whitehouse, Wendy</creatorcontrib><creatorcontrib>Gilkerson, Robert</creatorcontrib><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><title>Mitochondrion</title><addtitle>Mitochondrion</addtitle><description>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cardiac</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cultured cell</subject><subject>Differentiation</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Membrane Potentials</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>OMA1</subject><subject>OPA1</subject><subject>Rats</subject><subject>Tretinoin - pharmacology</subject><issn>1567-7249</issn><issn>1872-8278</issn><issn>1872-8278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAhyQj1yy2JM4diSEVFVAKxWVA1yxJvak9SqJi52NtG-PV9tWcOHkkf3P59F8jL2VYiOFbD9sN1NY4gYElAvYCKGfsVNpNFQGtHleatXqSkPTnbBXOW-FkFoCvGQndV2bWipzyn59Kwh3F2efAo785vu55G4kXPGWeMg80Uoph37cc3RLWHEhz_s992EYKNG8BFxCnHkc-GXngDtMPsRpH_sR85JfsxcDjpnePJxn7OeXzz8uLqvrm69XF-fXlWuUWiqvCdHUvqceOtm0SiKC7IzpG6GcUMIM2jTUtzUZ7FowRC0I4zvjFGll6jP26ci93_UTeVcGSzja-xQmTHsbMdh_X-ZwZ2_janUnmlZCAbx_AKT4e0d5sVPIjsYRZ4q7bKHRjRKyBl2icIy6FHNONDx9I4U9iLFbexBjD2KsBFvElKZ3fw_41PJoogQ-HgNU1rQGSja7QLMjHxK5xfoY_sf_AwEUoO8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Garcia, Iraselia</creator><creator>Calderon, Fredy</creator><creator>la Torre, Patrick De</creator><creator>Vallier, Shaynah St</creator><creator>Rodriguez, Cristobal</creator><creator>Agarwala, Divya</creator><creator>Keniry, Megan</creator><creator>Innis-Whitehouse, Wendy</creator><creator>Gilkerson, Robert</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5725-6627</orcidid><orcidid>https://orcid.org/0000-0001-9379-3350</orcidid><orcidid>https://orcid.org/0000-0001-5560-9823</orcidid><orcidid>https://orcid.org/0000-0002-9066-5502</orcidid><orcidid>https://orcid.org/0000-0003-1836-1923</orcidid></search><sort><creationdate>20210301</creationdate><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><author>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cardiac</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cultured cell</topic><topic>Differentiation</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Membrane Potentials</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>OMA1</topic><topic>OPA1</topic><topic>Rats</topic><topic>Tretinoin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Iraselia</creatorcontrib><creatorcontrib>Calderon, Fredy</creatorcontrib><creatorcontrib>la Torre, Patrick De</creatorcontrib><creatorcontrib>Vallier, Shaynah St</creatorcontrib><creatorcontrib>Rodriguez, Cristobal</creatorcontrib><creatorcontrib>Agarwala, Divya</creatorcontrib><creatorcontrib>Keniry, Megan</creatorcontrib><creatorcontrib>Innis-Whitehouse, Wendy</creatorcontrib><creatorcontrib>Gilkerson, Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mitochondrion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Iraselia</au><au>Calderon, Fredy</au><au>la Torre, Patrick De</au><au>Vallier, Shaynah St</au><au>Rodriguez, Cristobal</au><au>Agarwala, Divya</au><au>Keniry, Megan</au><au>Innis-Whitehouse, Wendy</au><au>Gilkerson, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</atitle><jtitle>Mitochondrion</jtitle><addtitle>Mitochondrion</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>57</volume><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>1567-7249</issn><issn>1872-8278</issn><eissn>1872-8278</eissn><abstract>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33383158</pmid><doi>10.1016/j.mito.2020.12.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5725-6627</orcidid><orcidid>https://orcid.org/0000-0001-9379-3350</orcidid><orcidid>https://orcid.org/0000-0001-5560-9823</orcidid><orcidid>https://orcid.org/0000-0002-9066-5502</orcidid><orcidid>https://orcid.org/0000-0003-1836-1923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-7249
ispartof Mitochondrion, 2021-03, Vol.57, p.88-96
issn 1567-7249
1872-8278
1872-8278
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904612
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Apoptosis
Cardiac
Cell Differentiation
Cell Line, Tumor
Cultured cell
Differentiation
GTP Phosphohydrolases - metabolism
Humans
Membrane Potentials
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Mice
Mitochondria
Mitochondria, Heart - metabolism
Mitochondrial Membranes - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
OMA1
OPA1
Rats
Tretinoin - pharmacology
title Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20OPA1%20cleavage%20is%20reversibly%20activated%20by%20differentiation%20of%20H9c2%20cardiomyoblasts&rft.jtitle=Mitochondrion&rft.au=Garcia,%20Iraselia&rft.date=2021-03-01&rft.volume=57&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=1567-7249&rft.eissn=1872-8278&rft_id=info:doi/10.1016/j.mito.2020.12.007&rft_dat=%3Cproquest_pubme%3E2474501327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474501327&rft_id=info:pmid/33383158&rft_els_id=S1567724920302300&rfr_iscdi=true