Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts
•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles. Optic atrophy-1 (OPA1) is a dynamin-like GTPase locali...
Gespeichert in:
Veröffentlicht in: | Mitochondrion 2021-03, Vol.57, p.88-96 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | |
container_start_page | 88 |
container_title | Mitochondrion |
container_volume | 57 |
creator | Garcia, Iraselia Calderon, Fredy la Torre, Patrick De Vallier, Shaynah St Rodriguez, Cristobal Agarwala, Divya Keniry, Megan Innis-Whitehouse, Wendy Gilkerson, Robert |
description | •Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles.
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis. |
doi_str_mv | 10.1016/j.mito.2020.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567724920302300</els_id><sourcerecordid>2474501327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAhyQj1yy2JM4diSEVFVAKxWVA1yxJvak9SqJi52NtG-PV9tWcOHkkf3P59F8jL2VYiOFbD9sN1NY4gYElAvYCKGfsVNpNFQGtHleatXqSkPTnbBXOW-FkFoCvGQndV2bWipzyn59Kwh3F2efAo785vu55G4kXPGWeMg80Uoph37cc3RLWHEhz_s992EYKNG8BFxCnHkc-GXngDtMPsRpH_sR85JfsxcDjpnePJxn7OeXzz8uLqvrm69XF-fXlWuUWiqvCdHUvqceOtm0SiKC7IzpG6GcUMIM2jTUtzUZ7FowRC0I4zvjFGll6jP26ci93_UTeVcGSzja-xQmTHsbMdh_X-ZwZ2_janUnmlZCAbx_AKT4e0d5sVPIjsYRZ4q7bKHRjRKyBl2icIy6FHNONDx9I4U9iLFbexBjD2KsBFvElKZ3fw_41PJoogQ-HgNU1rQGSja7QLMjHxK5xfoY_sf_AwEUoO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474501327</pqid></control><display><type>article</type><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</creator><creatorcontrib>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</creatorcontrib><description>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles.
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</description><identifier>ISSN: 1567-7249</identifier><identifier>ISSN: 1872-8278</identifier><identifier>EISSN: 1872-8278</identifier><identifier>DOI: 10.1016/j.mito.2020.12.007</identifier><identifier>PMID: 33383158</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Apoptosis ; Cardiac ; Cell Differentiation ; Cell Line, Tumor ; Cultured cell ; Differentiation ; GTP Phosphohydrolases - metabolism ; Humans ; Membrane Potentials ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Mice ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondrial Membranes - metabolism ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; OMA1 ; OPA1 ; Rats ; Tretinoin - pharmacology</subject><ispartof>Mitochondrion, 2021-03, Vol.57, p.88-96</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</citedby><cites>FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</cites><orcidid>0000-0002-5725-6627 ; 0000-0001-9379-3350 ; 0000-0001-5560-9823 ; 0000-0002-9066-5502 ; 0000-0003-1836-1923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mito.2020.12.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33383158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Iraselia</creatorcontrib><creatorcontrib>Calderon, Fredy</creatorcontrib><creatorcontrib>la Torre, Patrick De</creatorcontrib><creatorcontrib>Vallier, Shaynah St</creatorcontrib><creatorcontrib>Rodriguez, Cristobal</creatorcontrib><creatorcontrib>Agarwala, Divya</creatorcontrib><creatorcontrib>Keniry, Megan</creatorcontrib><creatorcontrib>Innis-Whitehouse, Wendy</creatorcontrib><creatorcontrib>Gilkerson, Robert</creatorcontrib><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><title>Mitochondrion</title><addtitle>Mitochondrion</addtitle><description>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles.
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Cardiac</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cultured cell</subject><subject>Differentiation</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Membrane Potentials</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>OMA1</subject><subject>OPA1</subject><subject>Rats</subject><subject>Tretinoin - pharmacology</subject><issn>1567-7249</issn><issn>1872-8278</issn><issn>1872-8278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAhyQj1yy2JM4diSEVFVAKxWVA1yxJvak9SqJi52NtG-PV9tWcOHkkf3P59F8jL2VYiOFbD9sN1NY4gYElAvYCKGfsVNpNFQGtHleatXqSkPTnbBXOW-FkFoCvGQndV2bWipzyn59Kwh3F2efAo785vu55G4kXPGWeMg80Uoph37cc3RLWHEhz_s992EYKNG8BFxCnHkc-GXngDtMPsRpH_sR85JfsxcDjpnePJxn7OeXzz8uLqvrm69XF-fXlWuUWiqvCdHUvqceOtm0SiKC7IzpG6GcUMIM2jTUtzUZ7FowRC0I4zvjFGll6jP26ci93_UTeVcGSzja-xQmTHsbMdh_X-ZwZ2_janUnmlZCAbx_AKT4e0d5sVPIjsYRZ4q7bKHRjRKyBl2icIy6FHNONDx9I4U9iLFbexBjD2KsBFvElKZ3fw_41PJoogQ-HgNU1rQGSja7QLMjHxK5xfoY_sf_AwEUoO8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Garcia, Iraselia</creator><creator>Calderon, Fredy</creator><creator>la Torre, Patrick De</creator><creator>Vallier, Shaynah St</creator><creator>Rodriguez, Cristobal</creator><creator>Agarwala, Divya</creator><creator>Keniry, Megan</creator><creator>Innis-Whitehouse, Wendy</creator><creator>Gilkerson, Robert</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5725-6627</orcidid><orcidid>https://orcid.org/0000-0001-9379-3350</orcidid><orcidid>https://orcid.org/0000-0001-5560-9823</orcidid><orcidid>https://orcid.org/0000-0002-9066-5502</orcidid><orcidid>https://orcid.org/0000-0003-1836-1923</orcidid></search><sort><creationdate>20210301</creationdate><title>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</title><author>Garcia, Iraselia ; Calderon, Fredy ; la Torre, Patrick De ; Vallier, Shaynah St ; Rodriguez, Cristobal ; Agarwala, Divya ; Keniry, Megan ; Innis-Whitehouse, Wendy ; Gilkerson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d7eaa83dbeb2914651aa21988b405c0508f784eb63e8a9628ee6208d98c5e7583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Cardiac</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cultured cell</topic><topic>Differentiation</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Membrane Potentials</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>OMA1</topic><topic>OPA1</topic><topic>Rats</topic><topic>Tretinoin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Iraselia</creatorcontrib><creatorcontrib>Calderon, Fredy</creatorcontrib><creatorcontrib>la Torre, Patrick De</creatorcontrib><creatorcontrib>Vallier, Shaynah St</creatorcontrib><creatorcontrib>Rodriguez, Cristobal</creatorcontrib><creatorcontrib>Agarwala, Divya</creatorcontrib><creatorcontrib>Keniry, Megan</creatorcontrib><creatorcontrib>Innis-Whitehouse, Wendy</creatorcontrib><creatorcontrib>Gilkerson, Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mitochondrion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Iraselia</au><au>Calderon, Fredy</au><au>la Torre, Patrick De</au><au>Vallier, Shaynah St</au><au>Rodriguez, Cristobal</au><au>Agarwala, Divya</au><au>Keniry, Megan</au><au>Innis-Whitehouse, Wendy</au><au>Gilkerson, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts</atitle><jtitle>Mitochondrion</jtitle><addtitle>Mitochondrion</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>57</volume><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>1567-7249</issn><issn>1872-8278</issn><eissn>1872-8278</eissn><abstract>•Long OPA1 are retained in H9c2 cells under CCCP challenge, despite presence of OMA1.•Differentiation of H9c2s robustly and reversibly activates OPA1 cleavage.•Induction of OPA1 processing suggests novel mechanistic and developmental OPA1 roles.
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33383158</pmid><doi>10.1016/j.mito.2020.12.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5725-6627</orcidid><orcidid>https://orcid.org/0000-0001-9379-3350</orcidid><orcidid>https://orcid.org/0000-0001-5560-9823</orcidid><orcidid>https://orcid.org/0000-0002-9066-5502</orcidid><orcidid>https://orcid.org/0000-0003-1836-1923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7249 |
ispartof | Mitochondrion, 2021-03, Vol.57, p.88-96 |
issn | 1567-7249 1872-8278 1872-8278 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904612 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Apoptosis Cardiac Cell Differentiation Cell Line, Tumor Cultured cell Differentiation GTP Phosphohydrolases - metabolism Humans Membrane Potentials Metalloendopeptidases - genetics Metalloendopeptidases - metabolism Mice Mitochondria Mitochondria, Heart - metabolism Mitochondrial Membranes - metabolism Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism OMA1 OPA1 Rats Tretinoin - pharmacology |
title | Mitochondrial OPA1 cleavage is reversibly activated by differentiation of H9c2 cardiomyoblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20OPA1%20cleavage%20is%20reversibly%20activated%20by%20differentiation%20of%20H9c2%20cardiomyoblasts&rft.jtitle=Mitochondrion&rft.au=Garcia,%20Iraselia&rft.date=2021-03-01&rft.volume=57&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=1567-7249&rft.eissn=1872-8278&rft_id=info:doi/10.1016/j.mito.2020.12.007&rft_dat=%3Cproquest_pubme%3E2474501327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474501327&rft_id=info:pmid/33383158&rft_els_id=S1567724920302300&rfr_iscdi=true |