Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics

Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-02, Vol.61 (2), p.938-949
Hauptverfasser: Antila, Hanne S, M. Ferreira, Tiago, Ollila, O. H. Samuli, Miettinen, Markus S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 949
container_issue 2
container_start_page 938
container_title Journal of chemical information and modeling
container_volume 61
creator Antila, Hanne S
M. Ferreira, Tiago
Ollila, O. H. Samuli
Miettinen, Markus S
description Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin–lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscopenot only for lipid membranes but for all biomacromolecular systems.
doi_str_mv 10.1021/acs.jcim.0c01299
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7903423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497221844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-5baeba5c4ad07b9978f168be6b7af64ef85ead90589d208152f636b5885234113</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhYMozji6dyUBNy7sNu9KXAhOjy8YGFEH3IVUKjWdNpWUSZXQ_970dPeggqsbuN85uYcDwFOMlhgR_MrYstxYPyyRRZgodQ-cYs7UQgn0_f7xzZU4AY9K2SBEqRLkITihlCnBG3UK7HXx8QZejS7CCzMZOCX4xYy-C1t47qJdDyb_gOc-DSk4OweT4Vc_1Dn5FMtr-HmdyrhOwVcJXKXYpzzc7kyAF9toBm_LY_CgN6G4J4d5Bq7fv_u2-ri4vPrwafX2cmGYwNOCt8a1hltmOtS0SjWyx0K2TrSN6QVzveTOdApxqTqCJOakF1S0XEpOKMOYnoE3e99xbgfXWRenbIIes68htjoZr__eRL_WN-mXbhSijNBq8OJgkNPP2ZVJD75YF4KJLs1FEyYxxgRjVNHn_6CbNOeaekephhAsGasU2lM2p1Ky6--OwUjvGtS1Qb1rUB8arJJnf4a4Exwrq8DLPXArPX76X7_f_7mpQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497221844</pqid></control><display><type>article</type><title>Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Antila, Hanne S ; M. Ferreira, Tiago ; Ollila, O. H. Samuli ; Miettinen, Markus S</creator><creatorcontrib>Antila, Hanne S ; M. Ferreira, Tiago ; Ollila, O. H. Samuli ; Miettinen, Markus S</creatorcontrib><description>Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin–lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscopenot only for lipid membranes but for all biomacromolecular systems.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c01299</identifier><identifier>PMID: 33496579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benchmarking ; Benchmarks ; Cholesterol ; Computational Biochemistry ; Data banks ; Lipid Bilayers ; Lipids ; Molecular Conformation ; Molecular dynamics ; Molecular Dynamics Simulation ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Open data ; Phosphatidylcholine ; Phospholipids ; Simulation</subject><ispartof>Journal of chemical information and modeling, 2021-02, Vol.61 (2), p.938-949</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Feb 22, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-5baeba5c4ad07b9978f168be6b7af64ef85ead90589d208152f636b5885234113</citedby><cites>FETCH-LOGICAL-a461t-5baeba5c4ad07b9978f168be6b7af64ef85ead90589d208152f636b5885234113</cites><orcidid>0000-0002-3999-4722 ; 0000-0002-8728-1006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c01299$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c01299$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33496579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antila, Hanne S</creatorcontrib><creatorcontrib>M. Ferreira, Tiago</creatorcontrib><creatorcontrib>Ollila, O. H. Samuli</creatorcontrib><creatorcontrib>Miettinen, Markus S</creatorcontrib><title>Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin–lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscopenot only for lipid membranes but for all biomacromolecular systems.</description><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Cholesterol</subject><subject>Computational Biochemistry</subject><subject>Data banks</subject><subject>Lipid Bilayers</subject><subject>Lipids</subject><subject>Molecular Conformation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Open data</subject><subject>Phosphatidylcholine</subject><subject>Phospholipids</subject><subject>Simulation</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUuLFDEUhYMozji6dyUBNy7sNu9KXAhOjy8YGFEH3IVUKjWdNpWUSZXQ_970dPeggqsbuN85uYcDwFOMlhgR_MrYstxYPyyRRZgodQ-cYs7UQgn0_f7xzZU4AY9K2SBEqRLkITihlCnBG3UK7HXx8QZejS7CCzMZOCX4xYy-C1t47qJdDyb_gOc-DSk4OweT4Vc_1Dn5FMtr-HmdyrhOwVcJXKXYpzzc7kyAF9toBm_LY_CgN6G4J4d5Bq7fv_u2-ri4vPrwafX2cmGYwNOCt8a1hltmOtS0SjWyx0K2TrSN6QVzveTOdApxqTqCJOakF1S0XEpOKMOYnoE3e99xbgfXWRenbIIes68htjoZr__eRL_WN-mXbhSijNBq8OJgkNPP2ZVJD75YF4KJLs1FEyYxxgRjVNHn_6CbNOeaekephhAsGasU2lM2p1Ky6--OwUjvGtS1Qb1rUB8arJJnf4a4Exwrq8DLPXArPX76X7_f_7mpQw</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Antila, Hanne S</creator><creator>M. Ferreira, Tiago</creator><creator>Ollila, O. H. Samuli</creator><creator>Miettinen, Markus S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3999-4722</orcidid><orcidid>https://orcid.org/0000-0002-8728-1006</orcidid></search><sort><creationdate>20210222</creationdate><title>Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics</title><author>Antila, Hanne S ; M. Ferreira, Tiago ; Ollila, O. H. Samuli ; Miettinen, Markus S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-5baeba5c4ad07b9978f168be6b7af64ef85ead90589d208152f636b5885234113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Cholesterol</topic><topic>Computational Biochemistry</topic><topic>Data banks</topic><topic>Lipid Bilayers</topic><topic>Lipids</topic><topic>Molecular Conformation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Open data</topic><topic>Phosphatidylcholine</topic><topic>Phospholipids</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antila, Hanne S</creatorcontrib><creatorcontrib>M. Ferreira, Tiago</creatorcontrib><creatorcontrib>Ollila, O. H. Samuli</creatorcontrib><creatorcontrib>Miettinen, Markus S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antila, Hanne S</au><au>M. Ferreira, Tiago</au><au>Ollila, O. H. Samuli</au><au>Miettinen, Markus S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-02-22</date><risdate>2021</risdate><volume>61</volume><issue>2</issue><spage>938</spage><epage>949</epage><pages>938-949</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin–lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscopenot only for lipid membranes but for all biomacromolecular systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33496579</pmid><doi>10.1021/acs.jcim.0c01299</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3999-4722</orcidid><orcidid>https://orcid.org/0000-0002-8728-1006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-02, Vol.61 (2), p.938-949
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7903423
source MEDLINE; American Chemical Society Journals
subjects Benchmarking
Benchmarks
Cholesterol
Computational Biochemistry
Data banks
Lipid Bilayers
Lipids
Molecular Conformation
Molecular dynamics
Molecular Dynamics Simulation
NMR
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Open data
Phosphatidylcholine
Phospholipids
Simulation
title Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Open%20Data%20to%20Rapidly%20Benchmark%20Biomolecular%20Simulations:%20Phospholipid%20Conformational%20Dynamics&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Antila,%20Hanne%20S&rft.date=2021-02-22&rft.volume=61&rft.issue=2&rft.spage=938&rft.epage=949&rft.pages=938-949&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c01299&rft_dat=%3Cproquest_pubme%3E2497221844%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497221844&rft_id=info:pmid/33496579&rfr_iscdi=true