How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide
We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2021-02, Vol.86 (4), p.3565-3573 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3573 |
---|---|
container_issue | 4 |
container_start_page | 3565 |
container_title | Journal of organic chemistry |
container_volume | 86 |
creator | Hansen, Thomas Vermeeren, Pascal Yoshisada, Ryoji Filippov, Dmitri V van der Marel, Gijsbert A Codée, Jeroen D. C Hamlin, Trevor A |
description | We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions decreases upon ascending in group 1 along the series Cs+ > Rb+ > K+ > Na+ > Li+ > H+. Our activation strain and Kohn–Sham molecular orbital analyses reveal that the enhanced reactivity of the Lewis acid-catalyzed ring-opening reaction is caused by the reduced steric (Pauli) repulsion between the filled orbitals of the epoxide and the nucleophile, as the Lewis acid polarizes the filled orbitals of the epoxide more efficiently away from the incoming nucleophile. Furthermore, we established that the regioselectivity of these ring-opening reactions is, aside from the “classical” strain control, also dictated by a hitherto unknown mechanism, namely, the steric (Pauli) repulsion between the nucleophile and the substrate, which could be traced back to the asymmetric orbital density on the epoxide. In all, this work again demonstrates that the concept of Pauli-lowering catalysis is a general phenomenon. |
doi_str_mv | 10.1021/acs.joc.0c02955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486467387</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-f8bdf95f6500903b110978a6b7c3692cfd70c421d3b7080c5f72ef9485dfe1a83</originalsourceid><addsrcrecordid>eNp1kNFLwzAQh4Mobk6ffZM-CtLtkjRpgyCMok4YDESfQ5omW0fXzGZzm3-9kU3RB-_lHu673x0fQpcY-hgIHijt-3On-6CBCMaOUBczAjEXkByjLgAhMSWcdtCZ93MIxRg7RR1KGc0wF110O3KbaGw2lY-Guip9lKuVqncfJnqummk8WZomdB85G-U7XbuZ2ZrGRJNtVZpzdGJV7c3FoffQ68P9Sz6Kx5PHp3w4jlVCxCq2WVFawSxnAAJogTGINFO8SDXlgmhbpqATgktapJCBZjYlxookY6U1WGW0h-72uct1sTClNs2qVbVcttVCtTvpVCX_TppqJqfuXaYCMOdJCLg-BLTubW38Si4qr01dq8a4tZckyXjCU5qlAR3sUd0671tjf85gkF_KZVAug3J5UB42rn5_98N_Ow7AzR7Yb67bJsj6N-4T0l-MPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486467387</pqid></control><display><type>article</type><title>How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide</title><source>American Chemical Society (ACS) Journals</source><creator>Hansen, Thomas ; Vermeeren, Pascal ; Yoshisada, Ryoji ; Filippov, Dmitri V ; van der Marel, Gijsbert A ; Codée, Jeroen D. C ; Hamlin, Trevor A</creator><creatorcontrib>Hansen, Thomas ; Vermeeren, Pascal ; Yoshisada, Ryoji ; Filippov, Dmitri V ; van der Marel, Gijsbert A ; Codée, Jeroen D. C ; Hamlin, Trevor A</creatorcontrib><description>We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions decreases upon ascending in group 1 along the series Cs+ > Rb+ > K+ > Na+ > Li+ > H+. Our activation strain and Kohn–Sham molecular orbital analyses reveal that the enhanced reactivity of the Lewis acid-catalyzed ring-opening reaction is caused by the reduced steric (Pauli) repulsion between the filled orbitals of the epoxide and the nucleophile, as the Lewis acid polarizes the filled orbitals of the epoxide more efficiently away from the incoming nucleophile. Furthermore, we established that the regioselectivity of these ring-opening reactions is, aside from the “classical” strain control, also dictated by a hitherto unknown mechanism, namely, the steric (Pauli) repulsion between the nucleophile and the substrate, which could be traced back to the asymmetric orbital density on the epoxide. In all, this work again demonstrates that the concept of Pauli-lowering catalysis is a general phenomenon.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.0c02955</identifier><identifier>PMID: 33538169</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2021-02, Vol.86 (4), p.3565-3573</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-f8bdf95f6500903b110978a6b7c3692cfd70c421d3b7080c5f72ef9485dfe1a83</citedby><cites>FETCH-LOGICAL-a429t-f8bdf95f6500903b110978a6b7c3692cfd70c421d3b7080c5f72ef9485dfe1a83</cites><orcidid>0000-0002-2100-6837 ; 0000-0002-6978-7425 ; 0000-0003-3531-2138 ; 0000-0002-6291-1569 ; 0000-0002-5128-1004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.0c02955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.0c02955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33538169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Thomas</creatorcontrib><creatorcontrib>Vermeeren, Pascal</creatorcontrib><creatorcontrib>Yoshisada, Ryoji</creatorcontrib><creatorcontrib>Filippov, Dmitri V</creatorcontrib><creatorcontrib>van der Marel, Gijsbert A</creatorcontrib><creatorcontrib>Codée, Jeroen D. C</creatorcontrib><creatorcontrib>Hamlin, Trevor A</creatorcontrib><title>How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions decreases upon ascending in group 1 along the series Cs+ > Rb+ > K+ > Na+ > Li+ > H+. Our activation strain and Kohn–Sham molecular orbital analyses reveal that the enhanced reactivity of the Lewis acid-catalyzed ring-opening reaction is caused by the reduced steric (Pauli) repulsion between the filled orbitals of the epoxide and the nucleophile, as the Lewis acid polarizes the filled orbitals of the epoxide more efficiently away from the incoming nucleophile. Furthermore, we established that the regioselectivity of these ring-opening reactions is, aside from the “classical” strain control, also dictated by a hitherto unknown mechanism, namely, the steric (Pauli) repulsion between the nucleophile and the substrate, which could be traced back to the asymmetric orbital density on the epoxide. In all, this work again demonstrates that the concept of Pauli-lowering catalysis is a general phenomenon.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kNFLwzAQh4Mobk6ffZM-CtLtkjRpgyCMok4YDESfQ5omW0fXzGZzm3-9kU3RB-_lHu673x0fQpcY-hgIHijt-3On-6CBCMaOUBczAjEXkByjLgAhMSWcdtCZ93MIxRg7RR1KGc0wF110O3KbaGw2lY-Guip9lKuVqncfJnqummk8WZomdB85G-U7XbuZ2ZrGRJNtVZpzdGJV7c3FoffQ68P9Sz6Kx5PHp3w4jlVCxCq2WVFawSxnAAJogTGINFO8SDXlgmhbpqATgktapJCBZjYlxookY6U1WGW0h-72uct1sTClNs2qVbVcttVCtTvpVCX_TppqJqfuXaYCMOdJCLg-BLTubW38Si4qr01dq8a4tZckyXjCU5qlAR3sUd0671tjf85gkF_KZVAug3J5UB42rn5_98N_Ow7AzR7Yb67bJsj6N-4T0l-MPA</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Hansen, Thomas</creator><creator>Vermeeren, Pascal</creator><creator>Yoshisada, Ryoji</creator><creator>Filippov, Dmitri V</creator><creator>van der Marel, Gijsbert A</creator><creator>Codée, Jeroen D. C</creator><creator>Hamlin, Trevor A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2100-6837</orcidid><orcidid>https://orcid.org/0000-0002-6978-7425</orcidid><orcidid>https://orcid.org/0000-0003-3531-2138</orcidid><orcidid>https://orcid.org/0000-0002-6291-1569</orcidid><orcidid>https://orcid.org/0000-0002-5128-1004</orcidid></search><sort><creationdate>20210219</creationdate><title>How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide</title><author>Hansen, Thomas ; Vermeeren, Pascal ; Yoshisada, Ryoji ; Filippov, Dmitri V ; van der Marel, Gijsbert A ; Codée, Jeroen D. C ; Hamlin, Trevor A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-f8bdf95f6500903b110978a6b7c3692cfd70c421d3b7080c5f72ef9485dfe1a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Thomas</creatorcontrib><creatorcontrib>Vermeeren, Pascal</creatorcontrib><creatorcontrib>Yoshisada, Ryoji</creatorcontrib><creatorcontrib>Filippov, Dmitri V</creatorcontrib><creatorcontrib>van der Marel, Gijsbert A</creatorcontrib><creatorcontrib>Codée, Jeroen D. C</creatorcontrib><creatorcontrib>Hamlin, Trevor A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Thomas</au><au>Vermeeren, Pascal</au><au>Yoshisada, Ryoji</au><au>Filippov, Dmitri V</au><au>van der Marel, Gijsbert A</au><au>Codée, Jeroen D. C</au><au>Hamlin, Trevor A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>86</volume><issue>4</issue><spage>3565</spage><epage>3573</epage><pages>3565-3573</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>We have quantum chemically studied the Lewis acid-catalyzed epoxide ring-opening reaction of cyclohexene epoxide by MeZH (Z = O, S, and NH) using relativistic dispersion-corrected density functional theory. We found that the reaction barrier of the Lewis acid-catalyzed epoxide ring-opening reactions decreases upon ascending in group 1 along the series Cs+ > Rb+ > K+ > Na+ > Li+ > H+. Our activation strain and Kohn–Sham molecular orbital analyses reveal that the enhanced reactivity of the Lewis acid-catalyzed ring-opening reaction is caused by the reduced steric (Pauli) repulsion between the filled orbitals of the epoxide and the nucleophile, as the Lewis acid polarizes the filled orbitals of the epoxide more efficiently away from the incoming nucleophile. Furthermore, we established that the regioselectivity of these ring-opening reactions is, aside from the “classical” strain control, also dictated by a hitherto unknown mechanism, namely, the steric (Pauli) repulsion between the nucleophile and the substrate, which could be traced back to the asymmetric orbital density on the epoxide. In all, this work again demonstrates that the concept of Pauli-lowering catalysis is a general phenomenon.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33538169</pmid><doi>10.1021/acs.joc.0c02955</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2100-6837</orcidid><orcidid>https://orcid.org/0000-0002-6978-7425</orcidid><orcidid>https://orcid.org/0000-0003-3531-2138</orcidid><orcidid>https://orcid.org/0000-0002-6291-1569</orcidid><orcidid>https://orcid.org/0000-0002-5128-1004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3263 |
ispartof | Journal of organic chemistry, 2021-02, Vol.86 (4), p.3565-3573 |
issn | 0022-3263 1520-6904 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901664 |
source | American Chemical Society (ACS) Journals |
title | How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Lewis%20Acids%20Catalyze%20Ring-Openings%20of%20Cyclohexene%20Oxide&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Hansen,%20Thomas&rft.date=2021-02-19&rft.volume=86&rft.issue=4&rft.spage=3565&rft.epage=3573&rft.pages=3565-3573&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.0c02955&rft_dat=%3Cproquest_pubme%3E2486467387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486467387&rft_id=info:pmid/33538169&rfr_iscdi=true |