Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy
The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucos...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2021-02, Vol.12 (2), p.1020-1035 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 2 |
container_start_page | 1020 |
container_title | Biomedical optics express |
container_volume | 12 |
creator | Konnikova, Maria R Cherkasova, Olga P Nazarov, Maxim M Vrazhnov, Denis A Kistenev, Yuri V Titov, Sergei E Kopeikina, Elena V Shevchenko, Sergei P Shkurinov, Alexander P |
description | The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated. |
doi_str_mv | 10.1364/BOE.412715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498993165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-14863aece48492f01c4ecfb72955750b65e06ec8670061e22d7ccd24c36868b43</originalsourceid><addsrcrecordid>eNpVkUFvGyEQhVGVqrZSX_oDKo5RJKewsMBeIiVWklZylUt7Riw7a1PhZQNsIvfXF8tJ5HIZ0Hy8maeH0BdKrigT_Nvt490Vp5Wk9Qc0r2gtlpKo-uzkPkOLlP6QcjiXhKlPaMaYUKSu5Rzln8a7zWCGjM3Q4RaG8sJ5u4_BdXgI3eQBd67vIcKQnckuHNoxTJttqVB-Gb9PLuHQ49aH0OHRm7Qz-MXlQkA0W4j5L04j2BxDsmHcf0Yfe-MTLF7rOfp9f_dr9X25fnz4sbpZLy2TKi8pV4IZsMAVb6qeUMvB9q2smrJ6TVpRAxFglZCECApV1Ulru4rb4k6olrNzdH3UHad2B50tDqLxeoxuZ-JeB-P0_53BbfUmPGvZEMqoKgIXrwIxPE2Qst65ZMF7M0CYkq54o5qGUVEX9PKI2mIyRejfx1CiD0npkpQ-JlXgr6eLvaNvubB_lNCRSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498993165</pqid></control><display><type>article</type><title>Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Konnikova, Maria R ; Cherkasova, Olga P ; Nazarov, Maxim M ; Vrazhnov, Denis A ; Kistenev, Yuri V ; Titov, Sergei E ; Kopeikina, Elena V ; Shevchenko, Sergei P ; Shkurinov, Alexander P</creator><creatorcontrib>Konnikova, Maria R ; Cherkasova, Olga P ; Nazarov, Maxim M ; Vrazhnov, Denis A ; Kistenev, Yuri V ; Titov, Sergei E ; Kopeikina, Elena V ; Shevchenko, Sergei P ; Shkurinov, Alexander P</creatorcontrib><description>The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.412715</identifier><identifier>PMID: 33680557</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2021-02, Vol.12 (2), p.1020-1035</ispartof><rights>2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>2021 Optical Society of America under the terms of the 2021 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-14863aece48492f01c4ecfb72955750b65e06ec8670061e22d7ccd24c36868b43</citedby><cites>FETCH-LOGICAL-c378t-14863aece48492f01c4ecfb72955750b65e06ec8670061e22d7ccd24c36868b43</cites><orcidid>0000-0001-5760-1462 ; 0000-0002-8035-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901318/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901318/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27902,27903,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33680557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konnikova, Maria R</creatorcontrib><creatorcontrib>Cherkasova, Olga P</creatorcontrib><creatorcontrib>Nazarov, Maxim M</creatorcontrib><creatorcontrib>Vrazhnov, Denis A</creatorcontrib><creatorcontrib>Kistenev, Yuri V</creatorcontrib><creatorcontrib>Titov, Sergei E</creatorcontrib><creatorcontrib>Kopeikina, Elena V</creatorcontrib><creatorcontrib>Shevchenko, Sergei P</creatorcontrib><creatorcontrib>Shkurinov, Alexander P</creatorcontrib><title>Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUFvGyEQhVGVqrZSX_oDKo5RJKewsMBeIiVWklZylUt7Riw7a1PhZQNsIvfXF8tJ5HIZ0Hy8maeH0BdKrigT_Nvt490Vp5Wk9Qc0r2gtlpKo-uzkPkOLlP6QcjiXhKlPaMaYUKSu5Rzln8a7zWCGjM3Q4RaG8sJ5u4_BdXgI3eQBd67vIcKQnckuHNoxTJttqVB-Gb9PLuHQ49aH0OHRm7Qz-MXlQkA0W4j5L04j2BxDsmHcf0Yfe-MTLF7rOfp9f_dr9X25fnz4sbpZLy2TKi8pV4IZsMAVb6qeUMvB9q2smrJ6TVpRAxFglZCECApV1Ulru4rb4k6olrNzdH3UHad2B50tDqLxeoxuZ-JeB-P0_53BbfUmPGvZEMqoKgIXrwIxPE2Qst65ZMF7M0CYkq54o5qGUVEX9PKI2mIyRejfx1CiD0npkpQ-JlXgr6eLvaNvubB_lNCRSg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Konnikova, Maria R</creator><creator>Cherkasova, Olga P</creator><creator>Nazarov, Maxim M</creator><creator>Vrazhnov, Denis A</creator><creator>Kistenev, Yuri V</creator><creator>Titov, Sergei E</creator><creator>Kopeikina, Elena V</creator><creator>Shevchenko, Sergei P</creator><creator>Shkurinov, Alexander P</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5760-1462</orcidid><orcidid>https://orcid.org/0000-0002-8035-2422</orcidid></search><sort><creationdate>20210201</creationdate><title>Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy</title><author>Konnikova, Maria R ; Cherkasova, Olga P ; Nazarov, Maxim M ; Vrazhnov, Denis A ; Kistenev, Yuri V ; Titov, Sergei E ; Kopeikina, Elena V ; Shevchenko, Sergei P ; Shkurinov, Alexander P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-14863aece48492f01c4ecfb72955750b65e06ec8670061e22d7ccd24c36868b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konnikova, Maria R</creatorcontrib><creatorcontrib>Cherkasova, Olga P</creatorcontrib><creatorcontrib>Nazarov, Maxim M</creatorcontrib><creatorcontrib>Vrazhnov, Denis A</creatorcontrib><creatorcontrib>Kistenev, Yuri V</creatorcontrib><creatorcontrib>Titov, Sergei E</creatorcontrib><creatorcontrib>Kopeikina, Elena V</creatorcontrib><creatorcontrib>Shevchenko, Sergei P</creatorcontrib><creatorcontrib>Shkurinov, Alexander P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konnikova, Maria R</au><au>Cherkasova, Olga P</au><au>Nazarov, Maxim M</au><au>Vrazhnov, Denis A</au><au>Kistenev, Yuri V</au><au>Titov, Sergei E</au><au>Kopeikina, Elena V</au><au>Shevchenko, Sergei P</au><au>Shkurinov, Alexander P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>1020</spage><epage>1035</epage><pages>1020-1035</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33680557</pmid><doi>10.1364/BOE.412715</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5760-1462</orcidid><orcidid>https://orcid.org/0000-0002-8035-2422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2021-02, Vol.12 (2), p.1020-1035 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901318 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malignant%20and%20benign%20thyroid%20nodule%20differentiation%20through%20the%20analysis%20of%20blood%20plasma%20with%20terahertz%20spectroscopy&rft.jtitle=Biomedical%20optics%20express&rft.au=Konnikova,%20Maria%20R&rft.date=2021-02-01&rft.volume=12&rft.issue=2&rft.spage=1020&rft.epage=1035&rft.pages=1020-1035&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.412715&rft_dat=%3Cproquest_pubme%3E2498993165%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498993165&rft_id=info:pmid/33680557&rfr_iscdi=true |