Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones
Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2020-04, Vol.52 (4), p.418-427 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 4 |
container_start_page | 418 |
container_title | Nature genetics |
container_volume | 52 |
creator | Iwafuchi, Makiko Cuesta, Isabel Donahue, Greg Takenaka, Naomi Osipovich, Anna B. Magnuson, Mark A. Roder, Heinrich Seeholzer, Steven H. Santisteban, Pilar Zaret, Kenneth S. |
description | Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development. |
doi_str_mv | 10.1038/s41588-020-0591-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619513325</galeid><sourcerecordid>A619513325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</originalsourceid><addsrcrecordid>eNqNkl1r1jAYhosobk5_gCcS8EQPOvPVpD0RxnBzMBj4dRrS9Om7zL5JTVrd_r1P6dx8RUFykK_rvpM8uYviOaOHjIr6TZasquuSclrSqmFl_aDYZ5VUJdOsfohjqlgpqVB7xZOcryhlUtL6cbEnOKdCKrFfzKcQgASYfsT0lUzJhuwnH0MmPhDYtukmZtLBCKEj8xgDLk-QrFuZFnUAgVgy4hwgrQ4u-XEBSI9gTMSi2MUE5NLnCbn8tHjU2yHDs9v-oPh88u7T8fvy_OL07PjovHSKVlMpK6EarjvVS9U2tnWCCuu0tp2gXDvatQ3vrNBCd61Wrq9lrfqWix67WkgpDoq3q-84t1voHAS832DG5Lc23ZhovdndCf7SbOJ3oxvKKBdo8OrWIMVvM-TJbH12MAw2QJyz4aLmqqoEV4i-_AO9inMK-LyF0kJS_LJ7amMHMD70Ec91i6k5UqypmBC8QurwLxS2DrbeYQV7j-s7gtc7AmQmuJ42ds7ZnH388P_sxZddlq2sSzHnBP1d7Rg1SwbNmkGDGTRLBs3yxBe_F_1O8St0CPAVyLgVNpDuK_Vv1586SuZV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387340038</pqid></control><display><type>article</type><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</creator><creatorcontrib>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</creatorcontrib><description>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-020-0591-8</identifier><identifier>PMID: 32203463</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38 ; 38/35 ; 38/39 ; 38/91 ; 45 ; 631/136 ; 631/208 ; 631/337 ; 631/532 ; 64 ; 64/60 ; 82 ; 82/80 ; Agriculture ; Amino Acid Sequence ; Amino acids ; Animal Genetics and Genomics ; Animals ; Arrays ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Line ; Chromatin ; Chromatin - genetics ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; Embryonic development ; Embryos ; Female ; Gene Expression Regulation, Developmental - genetics ; Gene Function ; Gene Regulatory Networks - genetics ; Genetic algorithms ; Genetic aspects ; Histones ; Histones - genetics ; Human Genetics ; Humans ; Mice ; Mice, Inbred C57BL ; Molecular interactions ; Mutation ; Nucleosomes - genetics ; Peptides ; Physiological aspects ; Proteins ; Transcription factors ; Transcription Factors - genetics ; Transcription, Genetic - genetics</subject><ispartof>Nature genetics, 2020-04, Vol.52 (4), p.418-427</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</citedby><cites>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</cites><orcidid>0000-0003-1291-6246 ; 0000-0001-8932-3145 ; 0000-0003-1860-2491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-020-0591-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-020-0591-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwafuchi, Makiko</creatorcontrib><creatorcontrib>Cuesta, Isabel</creatorcontrib><creatorcontrib>Donahue, Greg</creatorcontrib><creatorcontrib>Takenaka, Naomi</creatorcontrib><creatorcontrib>Osipovich, Anna B.</creatorcontrib><creatorcontrib>Magnuson, Mark A.</creatorcontrib><creatorcontrib>Roder, Heinrich</creatorcontrib><creatorcontrib>Seeholzer, Steven H.</creatorcontrib><creatorcontrib>Santisteban, Pilar</creatorcontrib><creatorcontrib>Zaret, Kenneth S.</creatorcontrib><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</description><subject>38</subject><subject>38/35</subject><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>631/136</subject><subject>631/208</subject><subject>631/337</subject><subject>631/532</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/80</subject><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Arrays</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Function</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic algorithms</subject><subject>Genetic aspects</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular interactions</subject><subject>Mutation</subject><subject>Nucleosomes - genetics</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1r1jAYhosobk5_gCcS8EQPOvPVpD0RxnBzMBj4dRrS9Om7zL5JTVrd_r1P6dx8RUFykK_rvpM8uYviOaOHjIr6TZasquuSclrSqmFl_aDYZ5VUJdOsfohjqlgpqVB7xZOcryhlUtL6cbEnOKdCKrFfzKcQgASYfsT0lUzJhuwnH0MmPhDYtukmZtLBCKEj8xgDLk-QrFuZFnUAgVgy4hwgrQ4u-XEBSI9gTMSi2MUE5NLnCbn8tHjU2yHDs9v-oPh88u7T8fvy_OL07PjovHSKVlMpK6EarjvVS9U2tnWCCuu0tp2gXDvatQ3vrNBCd61Wrq9lrfqWix67WkgpDoq3q-84t1voHAS832DG5Lc23ZhovdndCf7SbOJ3oxvKKBdo8OrWIMVvM-TJbH12MAw2QJyz4aLmqqoEV4i-_AO9inMK-LyF0kJS_LJ7amMHMD70Ec91i6k5UqypmBC8QurwLxS2DrbeYQV7j-s7gtc7AmQmuJ42ds7ZnH388P_sxZddlq2sSzHnBP1d7Rg1SwbNmkGDGTRLBs3yxBe_F_1O8St0CPAVyLgVNpDuK_Vv1586SuZV</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Iwafuchi, Makiko</creator><creator>Cuesta, Isabel</creator><creator>Donahue, Greg</creator><creator>Takenaka, Naomi</creator><creator>Osipovich, Anna B.</creator><creator>Magnuson, Mark A.</creator><creator>Roder, Heinrich</creator><creator>Seeholzer, Steven H.</creator><creator>Santisteban, Pilar</creator><creator>Zaret, Kenneth S.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1291-6246</orcidid><orcidid>https://orcid.org/0000-0001-8932-3145</orcidid><orcidid>https://orcid.org/0000-0003-1860-2491</orcidid></search><sort><creationdate>20200401</creationdate><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><author>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38</topic><topic>38/35</topic><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>631/136</topic><topic>631/208</topic><topic>631/337</topic><topic>631/532</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/80</topic><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Arrays</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Function</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic algorithms</topic><topic>Genetic aspects</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular interactions</topic><topic>Mutation</topic><topic>Nucleosomes - genetics</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwafuchi, Makiko</creatorcontrib><creatorcontrib>Cuesta, Isabel</creatorcontrib><creatorcontrib>Donahue, Greg</creatorcontrib><creatorcontrib>Takenaka, Naomi</creatorcontrib><creatorcontrib>Osipovich, Anna B.</creatorcontrib><creatorcontrib>Magnuson, Mark A.</creatorcontrib><creatorcontrib>Roder, Heinrich</creatorcontrib><creatorcontrib>Seeholzer, Steven H.</creatorcontrib><creatorcontrib>Santisteban, Pilar</creatorcontrib><creatorcontrib>Zaret, Kenneth S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwafuchi, Makiko</au><au>Cuesta, Isabel</au><au>Donahue, Greg</au><au>Takenaka, Naomi</au><au>Osipovich, Anna B.</au><au>Magnuson, Mark A.</au><au>Roder, Heinrich</au><au>Seeholzer, Steven H.</au><au>Santisteban, Pilar</au><au>Zaret, Kenneth S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>52</volume><issue>4</issue><spage>418</spage><epage>427</epage><pages>418-427</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32203463</pmid><doi>10.1038/s41588-020-0591-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1291-6246</orcidid><orcidid>https://orcid.org/0000-0001-8932-3145</orcidid><orcidid>https://orcid.org/0000-0003-1860-2491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2020-04, Vol.52 (4), p.418-427 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901023 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 38 38/35 38/39 38/91 45 631/136 631/208 631/337 631/532 64 64/60 82 82/80 Agriculture Amino Acid Sequence Amino acids Animal Genetics and Genomics Animals Arrays Binding sites Biomedical and Life Sciences Biomedicine Cancer Research Cell Line Chromatin Chromatin - genetics Deoxyribonucleic acid DNA DNA - genetics Embryonic development Embryos Female Gene Expression Regulation, Developmental - genetics Gene Function Gene Regulatory Networks - genetics Genetic algorithms Genetic aspects Histones Histones - genetics Human Genetics Humans Mice Mice, Inbred C57BL Molecular interactions Mutation Nucleosomes - genetics Peptides Physiological aspects Proteins Transcription factors Transcription Factors - genetics Transcription, Genetic - genetics |
title | Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20network%20transitions%20in%20embryos%20depend%20upon%20interactions%20between%20a%20pioneer%20transcription%20factor%20and%20core%20histones&rft.jtitle=Nature%20genetics&rft.au=Iwafuchi,%20Makiko&rft.date=2020-04-01&rft.volume=52&rft.issue=4&rft.spage=418&rft.epage=427&rft.pages=418-427&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-020-0591-8&rft_dat=%3Cgale_pubme%3EA619513325%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387340038&rft_id=info:pmid/32203463&rft_galeid=A619513325&rfr_iscdi=true |