Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones

Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2020-04, Vol.52 (4), p.418-427
Hauptverfasser: Iwafuchi, Makiko, Cuesta, Isabel, Donahue, Greg, Takenaka, Naomi, Osipovich, Anna B., Magnuson, Mark A., Roder, Heinrich, Seeholzer, Steven H., Santisteban, Pilar, Zaret, Kenneth S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 4
container_start_page 418
container_title Nature genetics
container_volume 52
creator Iwafuchi, Makiko
Cuesta, Isabel
Donahue, Greg
Takenaka, Naomi
Osipovich, Anna B.
Magnuson, Mark A.
Roder, Heinrich
Seeholzer, Steven H.
Santisteban, Pilar
Zaret, Kenneth S.
description Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming. An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.
doi_str_mv 10.1038/s41588-020-0591-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619513325</galeid><sourcerecordid>A619513325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</originalsourceid><addsrcrecordid>eNqNkl1r1jAYhosobk5_gCcS8EQPOvPVpD0RxnBzMBj4dRrS9Om7zL5JTVrd_r1P6dx8RUFykK_rvpM8uYviOaOHjIr6TZasquuSclrSqmFl_aDYZ5VUJdOsfohjqlgpqVB7xZOcryhlUtL6cbEnOKdCKrFfzKcQgASYfsT0lUzJhuwnH0MmPhDYtukmZtLBCKEj8xgDLk-QrFuZFnUAgVgy4hwgrQ4u-XEBSI9gTMSi2MUE5NLnCbn8tHjU2yHDs9v-oPh88u7T8fvy_OL07PjovHSKVlMpK6EarjvVS9U2tnWCCuu0tp2gXDvatQ3vrNBCd61Wrq9lrfqWix67WkgpDoq3q-84t1voHAS832DG5Lc23ZhovdndCf7SbOJ3oxvKKBdo8OrWIMVvM-TJbH12MAw2QJyz4aLmqqoEV4i-_AO9inMK-LyF0kJS_LJ7amMHMD70Ec91i6k5UqypmBC8QurwLxS2DrbeYQV7j-s7gtc7AmQmuJ42ds7ZnH388P_sxZddlq2sSzHnBP1d7Rg1SwbNmkGDGTRLBs3yxBe_F_1O8St0CPAVyLgVNpDuK_Vv1586SuZV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387340038</pqid></control><display><type>article</type><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</creator><creatorcontrib>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</creatorcontrib><description>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming. An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-020-0591-8</identifier><identifier>PMID: 32203463</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38 ; 38/35 ; 38/39 ; 38/91 ; 45 ; 631/136 ; 631/208 ; 631/337 ; 631/532 ; 64 ; 64/60 ; 82 ; 82/80 ; Agriculture ; Amino Acid Sequence ; Amino acids ; Animal Genetics and Genomics ; Animals ; Arrays ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Line ; Chromatin ; Chromatin - genetics ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; Embryonic development ; Embryos ; Female ; Gene Expression Regulation, Developmental - genetics ; Gene Function ; Gene Regulatory Networks - genetics ; Genetic algorithms ; Genetic aspects ; Histones ; Histones - genetics ; Human Genetics ; Humans ; Mice ; Mice, Inbred C57BL ; Molecular interactions ; Mutation ; Nucleosomes - genetics ; Peptides ; Physiological aspects ; Proteins ; Transcription factors ; Transcription Factors - genetics ; Transcription, Genetic - genetics</subject><ispartof>Nature genetics, 2020-04, Vol.52 (4), p.418-427</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</citedby><cites>FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</cites><orcidid>0000-0003-1291-6246 ; 0000-0001-8932-3145 ; 0000-0003-1860-2491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-020-0591-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-020-0591-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32203463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwafuchi, Makiko</creatorcontrib><creatorcontrib>Cuesta, Isabel</creatorcontrib><creatorcontrib>Donahue, Greg</creatorcontrib><creatorcontrib>Takenaka, Naomi</creatorcontrib><creatorcontrib>Osipovich, Anna B.</creatorcontrib><creatorcontrib>Magnuson, Mark A.</creatorcontrib><creatorcontrib>Roder, Heinrich</creatorcontrib><creatorcontrib>Seeholzer, Steven H.</creatorcontrib><creatorcontrib>Santisteban, Pilar</creatorcontrib><creatorcontrib>Zaret, Kenneth S.</creatorcontrib><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming. An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</description><subject>38</subject><subject>38/35</subject><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>631/136</subject><subject>631/208</subject><subject>631/337</subject><subject>631/532</subject><subject>64</subject><subject>64/60</subject><subject>82</subject><subject>82/80</subject><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Arrays</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Function</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic algorithms</subject><subject>Genetic aspects</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular interactions</subject><subject>Mutation</subject><subject>Nucleosomes - genetics</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1r1jAYhosobk5_gCcS8EQPOvPVpD0RxnBzMBj4dRrS9Om7zL5JTVrd_r1P6dx8RUFykK_rvpM8uYviOaOHjIr6TZasquuSclrSqmFl_aDYZ5VUJdOsfohjqlgpqVB7xZOcryhlUtL6cbEnOKdCKrFfzKcQgASYfsT0lUzJhuwnH0MmPhDYtukmZtLBCKEj8xgDLk-QrFuZFnUAgVgy4hwgrQ4u-XEBSI9gTMSi2MUE5NLnCbn8tHjU2yHDs9v-oPh88u7T8fvy_OL07PjovHSKVlMpK6EarjvVS9U2tnWCCuu0tp2gXDvatQ3vrNBCd61Wrq9lrfqWix67WkgpDoq3q-84t1voHAS832DG5Lc23ZhovdndCf7SbOJ3oxvKKBdo8OrWIMVvM-TJbH12MAw2QJyz4aLmqqoEV4i-_AO9inMK-LyF0kJS_LJ7amMHMD70Ec91i6k5UqypmBC8QurwLxS2DrbeYQV7j-s7gtc7AmQmuJ42ds7ZnH388P_sxZddlq2sSzHnBP1d7Rg1SwbNmkGDGTRLBs3yxBe_F_1O8St0CPAVyLgVNpDuK_Vv1586SuZV</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Iwafuchi, Makiko</creator><creator>Cuesta, Isabel</creator><creator>Donahue, Greg</creator><creator>Takenaka, Naomi</creator><creator>Osipovich, Anna B.</creator><creator>Magnuson, Mark A.</creator><creator>Roder, Heinrich</creator><creator>Seeholzer, Steven H.</creator><creator>Santisteban, Pilar</creator><creator>Zaret, Kenneth S.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1291-6246</orcidid><orcidid>https://orcid.org/0000-0001-8932-3145</orcidid><orcidid>https://orcid.org/0000-0003-1860-2491</orcidid></search><sort><creationdate>20200401</creationdate><title>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</title><author>Iwafuchi, Makiko ; Cuesta, Isabel ; Donahue, Greg ; Takenaka, Naomi ; Osipovich, Anna B. ; Magnuson, Mark A. ; Roder, Heinrich ; Seeholzer, Steven H. ; Santisteban, Pilar ; Zaret, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-4536927d6f46b9abc303ac77ad3027c0db92da3737db76cf8486fb23f86f83443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38</topic><topic>38/35</topic><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>631/136</topic><topic>631/208</topic><topic>631/337</topic><topic>631/532</topic><topic>64</topic><topic>64/60</topic><topic>82</topic><topic>82/80</topic><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Arrays</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Function</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic algorithms</topic><topic>Genetic aspects</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular interactions</topic><topic>Mutation</topic><topic>Nucleosomes - genetics</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwafuchi, Makiko</creatorcontrib><creatorcontrib>Cuesta, Isabel</creatorcontrib><creatorcontrib>Donahue, Greg</creatorcontrib><creatorcontrib>Takenaka, Naomi</creatorcontrib><creatorcontrib>Osipovich, Anna B.</creatorcontrib><creatorcontrib>Magnuson, Mark A.</creatorcontrib><creatorcontrib>Roder, Heinrich</creatorcontrib><creatorcontrib>Seeholzer, Steven H.</creatorcontrib><creatorcontrib>Santisteban, Pilar</creatorcontrib><creatorcontrib>Zaret, Kenneth S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwafuchi, Makiko</au><au>Cuesta, Isabel</au><au>Donahue, Greg</au><au>Takenaka, Naomi</au><au>Osipovich, Anna B.</au><au>Magnuson, Mark A.</au><au>Roder, Heinrich</au><au>Seeholzer, Steven H.</au><au>Santisteban, Pilar</au><au>Zaret, Kenneth S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>52</volume><issue>4</issue><spage>418</spage><epage>427</epage><pages>418-427</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short α-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming. An α-helical region conserved among FOXA pioneer factors interacts with core histones and promotes chromatin opening in vitro. This region also promotes chromatin opening in early mouse embryos and is required for normal development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32203463</pmid><doi>10.1038/s41588-020-0591-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1291-6246</orcidid><orcidid>https://orcid.org/0000-0001-8932-3145</orcidid><orcidid>https://orcid.org/0000-0003-1860-2491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2020-04, Vol.52 (4), p.418-427
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7901023
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 38
38/35
38/39
38/91
45
631/136
631/208
631/337
631/532
64
64/60
82
82/80
Agriculture
Amino Acid Sequence
Amino acids
Animal Genetics and Genomics
Animals
Arrays
Binding sites
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Line
Chromatin
Chromatin - genetics
Deoxyribonucleic acid
DNA
DNA - genetics
Embryonic development
Embryos
Female
Gene Expression Regulation, Developmental - genetics
Gene Function
Gene Regulatory Networks - genetics
Genetic algorithms
Genetic aspects
Histones
Histones - genetics
Human Genetics
Humans
Mice
Mice, Inbred C57BL
Molecular interactions
Mutation
Nucleosomes - genetics
Peptides
Physiological aspects
Proteins
Transcription factors
Transcription Factors - genetics
Transcription, Genetic - genetics
title Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20network%20transitions%20in%20embryos%20depend%20upon%20interactions%20between%20a%20pioneer%20transcription%20factor%20and%20core%20histones&rft.jtitle=Nature%20genetics&rft.au=Iwafuchi,%20Makiko&rft.date=2020-04-01&rft.volume=52&rft.issue=4&rft.spage=418&rft.epage=427&rft.pages=418-427&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-020-0591-8&rft_dat=%3Cgale_pubme%3EA619513325%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387340038&rft_id=info:pmid/32203463&rft_galeid=A619513325&rfr_iscdi=true