Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures

Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2021-05, Vol.31 (5), p.495-516
Hauptverfasser: Sun, Lei, Xu, Kui, Huang, Wenze, Yang, Yucheng T., Li, Pan, Tang, Lei, Xiong, Tuanlin, Zhang, Qiangfeng Cliff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 5
container_start_page 495
container_title Cell research
container_volume 31
creator Sun, Lei
Xu, Kui
Huang, Wenze
Yang, Yucheng T.
Li, Pan
Tang, Lei
Xiong, Tuanlin
Zhang, Qiangfeng Cliff
description Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions. PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data to accurately analyze additional cell types. Further, PrismNet employs an “attention” strategy to computationally identify exact RBP-binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants (riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP–RNA interactions, with clear utility for understanding and treating human diseases.
doi_str_mv 10.1038/s41422-021-00476-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7900654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520676404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5a965bb28c6b7d55048def9cd46f0ffedc9a03fbd367a390ac209db65b0c49b23</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1UREvhBVggS910E3rjv8SbStWoBaSqIARry7GdwVXGHuxkpOz6DrwhT4LDlAJdsLEtne8c-_og9KqGNzXQ9iyzmhFSAakrANaIan6CjuqGtVXT0vagnAGKJIAcouc53wIQznj9DB1SKgitQR4h-zE5683owxrbOeiNN9i4YZgGnfA2xdH58OPu-6ebC-zD6JIuaAwZdzO2zm3x4HQKi3nKy-oD3vldxAufxzSZcUouv0BPez1k9_J-P0Zfri4_r95V1x_evl9dXFeGMxgrrqXgXUdaI7rGcg6sta6XxjLRQ987a6QG2neWikZTCdoQkLYrHjBMdoQeo_N97nbqNgV3YUx6UNvkNzrNKmqv_lWC_6rWcacaCSA4KwGn9wEpfptcHtXG5-U7dHBxyoowSaSUgi3oySP0Nk4plPEU4QREIxgsFNlTJsWck-sfHlODWkpU-xJVKVH9KlHNxfT67zEeLL9bKwDdA7lIYe3Sn7v_E_sTI0Wrsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520676404</pqid></control><display><type>article</type><title>Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Lei ; Xu, Kui ; Huang, Wenze ; Yang, Yucheng T. ; Li, Pan ; Tang, Lei ; Xiong, Tuanlin ; Zhang, Qiangfeng Cliff</creator><creatorcontrib>Sun, Lei ; Xu, Kui ; Huang, Wenze ; Yang, Yucheng T. ; Li, Pan ; Tang, Lei ; Xiong, Tuanlin ; Zhang, Qiangfeng Cliff</creatorcontrib><description>Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions. PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data to accurately analyze additional cell types. Further, PrismNet employs an “attention” strategy to computationally identify exact RBP-binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants (riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP–RNA interactions, with clear utility for understanding and treating human diseases.</description><identifier>ISSN: 1001-0602</identifier><identifier>EISSN: 1748-7838</identifier><identifier>DOI: 10.1038/s41422-021-00476-y</identifier><identifier>PMID: 33623109</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>45/43 ; 45/91 ; 631/1647/48 ; 631/337 ; 631/80/304 ; Binding Sites ; Biomedical and Life Sciences ; Cell Biology ; Cellular structure ; Deep Learning ; Depth profiling ; Gene expression ; Humans ; Life Sciences ; Nucleotide sequence ; Nucleotides ; Protein Binding ; Proteins ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA-binding protein ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Transcriptome ; Transcriptomes</subject><ispartof>Cell research, 2021-05, Vol.31 (5), p.495-516</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5a965bb28c6b7d55048def9cd46f0ffedc9a03fbd367a390ac209db65b0c49b23</citedby><cites>FETCH-LOGICAL-c540t-5a965bb28c6b7d55048def9cd46f0ffedc9a03fbd367a390ac209db65b0c49b23</cites><orcidid>0000-0003-1400-2157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900654/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900654/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33623109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Xu, Kui</creatorcontrib><creatorcontrib>Huang, Wenze</creatorcontrib><creatorcontrib>Yang, Yucheng T.</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>Tang, Lei</creatorcontrib><creatorcontrib>Xiong, Tuanlin</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><title>Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures</title><title>Cell research</title><addtitle>Cell Res</addtitle><addtitle>Cell Res</addtitle><description>Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions. PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data to accurately analyze additional cell types. Further, PrismNet employs an “attention” strategy to computationally identify exact RBP-binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants (riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP–RNA interactions, with clear utility for understanding and treating human diseases.</description><subject>45/43</subject><subject>45/91</subject><subject>631/1647/48</subject><subject>631/337</subject><subject>631/80/304</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cellular structure</subject><subject>Deep Learning</subject><subject>Depth profiling</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>1001-0602</issn><issn>1748-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhS1UREvhBVggS910E3rjv8SbStWoBaSqIARry7GdwVXGHuxkpOz6DrwhT4LDlAJdsLEtne8c-_og9KqGNzXQ9iyzmhFSAakrANaIan6CjuqGtVXT0vagnAGKJIAcouc53wIQznj9DB1SKgitQR4h-zE5683owxrbOeiNN9i4YZgGnfA2xdH58OPu-6ebC-zD6JIuaAwZdzO2zm3x4HQKi3nKy-oD3vldxAufxzSZcUouv0BPez1k9_J-P0Zfri4_r95V1x_evl9dXFeGMxgrrqXgXUdaI7rGcg6sta6XxjLRQ987a6QG2neWikZTCdoQkLYrHjBMdoQeo_N97nbqNgV3YUx6UNvkNzrNKmqv_lWC_6rWcacaCSA4KwGn9wEpfptcHtXG5-U7dHBxyoowSaSUgi3oySP0Nk4plPEU4QREIxgsFNlTJsWck-sfHlODWkpU-xJVKVH9KlHNxfT67zEeLL9bKwDdA7lIYe3Sn7v_E_sTI0Wrsw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sun, Lei</creator><creator>Xu, Kui</creator><creator>Huang, Wenze</creator><creator>Yang, Yucheng T.</creator><creator>Li, Pan</creator><creator>Tang, Lei</creator><creator>Xiong, Tuanlin</creator><creator>Zhang, Qiangfeng Cliff</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1400-2157</orcidid></search><sort><creationdate>20210501</creationdate><title>Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures</title><author>Sun, Lei ; Xu, Kui ; Huang, Wenze ; Yang, Yucheng T. ; Li, Pan ; Tang, Lei ; Xiong, Tuanlin ; Zhang, Qiangfeng Cliff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5a965bb28c6b7d55048def9cd46f0ffedc9a03fbd367a390ac209db65b0c49b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/43</topic><topic>45/91</topic><topic>631/1647/48</topic><topic>631/337</topic><topic>631/80/304</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cellular structure</topic><topic>Deep Learning</topic><topic>Depth profiling</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Xu, Kui</creatorcontrib><creatorcontrib>Huang, Wenze</creatorcontrib><creatorcontrib>Yang, Yucheng T.</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>Tang, Lei</creatorcontrib><creatorcontrib>Xiong, Tuanlin</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lei</au><au>Xu, Kui</au><au>Huang, Wenze</au><au>Yang, Yucheng T.</au><au>Li, Pan</au><au>Tang, Lei</au><au>Xiong, Tuanlin</au><au>Zhang, Qiangfeng Cliff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures</atitle><jtitle>Cell research</jtitle><stitle>Cell Res</stitle><addtitle>Cell Res</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>495</spage><epage>516</epage><pages>495-516</pages><issn>1001-0602</issn><eissn>1748-7838</eissn><abstract>Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not capture their condition-dependent nature. Here, after profiling transcriptome-wide in vivo RNA secondary structures in seven cell types, we developed PrismNet, a deep learning tool that integrates experimental in vivo RNA structure data and RBP binding data for matched cells to accurately predict dynamic RBP binding in various cellular conditions. PrismNet results for 168 RBPs support its utility for both understanding CLIP-seq results and largely extending such interaction data to accurately analyze additional cell types. Further, PrismNet employs an “attention” strategy to computationally identify exact RBP-binding nucleotides, and we discovered enrichment among dynamic RBP-binding sites for structure-changing variants (riboSNitches), which can link genetic diseases with dysregulated RBP bindings. Our rich profiling data and deep learning-based prediction tool provide access to a previously inaccessible layer of cell-type-specific RBP–RNA interactions, with clear utility for understanding and treating human diseases.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33623109</pmid><doi>10.1038/s41422-021-00476-y</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1400-2157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-0602
ispartof Cell research, 2021-05, Vol.31 (5), p.495-516
issn 1001-0602
1748-7838
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7900654
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects 45/43
45/91
631/1647/48
631/337
631/80/304
Binding Sites
Biomedical and Life Sciences
Cell Biology
Cellular structure
Deep Learning
Depth profiling
Gene expression
Humans
Life Sciences
Nucleotide sequence
Nucleotides
Protein Binding
Proteins
Ribonucleic acid
RNA
RNA - metabolism
RNA-binding protein
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Transcriptome
Transcriptomes
title Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20dynamic%20cellular%20protein%E2%80%93RNA%20interactions%20by%20deep%20learning%20using%20in%20vivo%20RNA%20structures&rft.jtitle=Cell%20research&rft.au=Sun,%20Lei&rft.date=2021-05-01&rft.volume=31&rft.issue=5&rft.spage=495&rft.epage=516&rft.pages=495-516&rft.issn=1001-0602&rft.eissn=1748-7838&rft_id=info:doi/10.1038/s41422-021-00476-y&rft_dat=%3Cproquest_pubme%3E2520676404%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520676404&rft_id=info:pmid/33623109&rfr_iscdi=true