AP-1 imprints a reversible transcriptional programme of senescent cells

Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2020-07, Vol.22 (7), p.842-855
Hauptverfasser: Martínez-Zamudio, Ricardo Iván, Roux, Pierre-François, de Freitas, José Américo N.L.F., Robinson, Lucas, Doré, Gregory, Sun, Bin, Belenki, Dimitri, Milanovic, Maja, Herbig, Utz, Schmitt, Clemens A., Gil, Jesús, Bischof, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 7
container_start_page 842
container_title Nature cell biology
container_volume 22
creator Martínez-Zamudio, Ricardo Iván
Roux, Pierre-François
de Freitas, José Américo N.L.F.
Robinson, Lucas
Doré, Gregory
Sun, Bin
Belenki, Dimitri
Milanovic, Maja
Herbig, Utz
Schmitt, Clemens A.
Gil, Jesús
Bischof, Oliver
description Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications. Bischof and colleagues report that AP-1 bookmarks prospective senescence enhancers for future activation to achieve a timely execution of the senescence programme.
doi_str_mv 10.1038/s41556-020-0529-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7899185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628784161</galeid><sourcerecordid>A628784161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-3bc406f582ab64b1fce44337595eab8b2b5f8d2fbafadd5eeabe553fabdade8d3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwA7igSFyoUIq_k1wqrVbQVloJxMfZcpJx6iqxFztZ4N9jK2XpVoCIDxmNn3c8Hr9Z9hyjM4xo9SYwzLkoEEEF4qQu-IPsGLNSFEyU9cMUC16UtCZH2ZMQbhDCjKHycXZECccxwsfZxepDgXMzbr2xU8hV7mEHPphmgHzyyobWm-1knFVDvvWu92ocIXc6D2AhtGCnvIVhCE-zR1oNAZ7d_k-yL-_efl5fFpv3F1fr1aZoBaVTQZuWIaF5RVQjWIN1C4xRWvKag2qqhjRcVx3RjdKq6zjEJHBOtWo61UHV0ZPsfKm7nZsRutSAV4OM7Y_K_5BOGXm4Y8217N1OllVd44rHAqdLget7ssvVRqYcoojEIdIdjuyr28O8-zpDmORoQrqusuDmIAnD8UMcsYi-vIfeuNnHqUWqJCVGiAjxT4oRRCmt8Z1avRpAGqtdvEmbjpYrQaqyYlik5s7-QMXVwWhaZ0GbmD8QnB4IIjPB96lXcwjy6tPHQxYvbOtdCB70flQYyeQ9uXhPRu_J5D2ZJvvi7tPsFb_MFoFqAb5B43RoDdgW9hhCiNOqFlzECOG1mVTy3drNdorS1_8vjTRZ6JBs3YP_Pea_t_8TIqICxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420333914</pqid></control><display><type>article</type><title>AP-1 imprints a reversible transcriptional programme of senescent cells</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Martínez-Zamudio, Ricardo Iván ; Roux, Pierre-François ; de Freitas, José Américo N.L.F. ; Robinson, Lucas ; Doré, Gregory ; Sun, Bin ; Belenki, Dimitri ; Milanovic, Maja ; Herbig, Utz ; Schmitt, Clemens A. ; Gil, Jesús ; Bischof, Oliver</creator><creatorcontrib>Martínez-Zamudio, Ricardo Iván ; Roux, Pierre-François ; de Freitas, José Américo N.L.F. ; Robinson, Lucas ; Doré, Gregory ; Sun, Bin ; Belenki, Dimitri ; Milanovic, Maja ; Herbig, Utz ; Schmitt, Clemens A. ; Gil, Jesús ; Bischof, Oliver</creatorcontrib><description>Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications. Bischof and colleagues report that AP-1 bookmarks prospective senescence enhancers for future activation to achieve a timely execution of the senescence programme.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-020-0529-5</identifier><identifier>PMID: 32514071</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/31 ; 14 ; 14/19 ; 38/22 ; 38/77 ; 38/89 ; 42/109 ; 42/41 ; 45/15 ; 45/23 ; 45/61 ; 631/114/2114 ; 631/114/2163 ; 631/337/100/2285 ; 631/337/2019 ; 631/80/509 ; 64/60 ; Activator protein 1 ; Analysis ; Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell culture ; Cell fate ; Cellular Senescence ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Developmental Biology ; Enhancers ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Female ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gene Expression Regulation ; Genetic transcription ; Health aspects ; Histones ; Histones - genetics ; Histones - metabolism ; Humans ; Life Sciences ; Life Sciences &amp; Biomedicine ; Mice, Inbred C57BL ; Phenotypes ; Physiological aspects ; Science &amp; Technology ; Scientific equipment and supplies industry ; Senescence ; Stem Cells ; Therapeutic targets ; Transcription Factor AP-1 ; Transcription Factor AP-1 - genetics ; Transcription Factor AP-1 - metabolism ; Transcription factors ; Transcriptome ; Transcriptomes</subject><ispartof>Nature cell biology, 2020-07, Vol.22 (7), p.842-855</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>112</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000538965600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c633t-3bc406f582ab64b1fce44337595eab8b2b5f8d2fbafadd5eeabe553fabdade8d3</citedby><cites>FETCH-LOGICAL-c633t-3bc406f582ab64b1fce44337595eab8b2b5f8d2fbafadd5eeabe553fabdade8d3</cites><orcidid>0000-0002-8963-4100 ; 0000-0003-3689-765X ; 0000-0003-2422-6277 ; 0000-0001-9202-4285 ; 0000-0002-9004-9849 ; 0000-0003-1860-6003 ; 0000-0002-4303-6260 ; 0000-0002-4731-2226 ; 0000-0002-0695-4206 ; 0000-0003-1051-6011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32514071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03021473$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez-Zamudio, Ricardo Iván</creatorcontrib><creatorcontrib>Roux, Pierre-François</creatorcontrib><creatorcontrib>de Freitas, José Américo N.L.F.</creatorcontrib><creatorcontrib>Robinson, Lucas</creatorcontrib><creatorcontrib>Doré, Gregory</creatorcontrib><creatorcontrib>Sun, Bin</creatorcontrib><creatorcontrib>Belenki, Dimitri</creatorcontrib><creatorcontrib>Milanovic, Maja</creatorcontrib><creatorcontrib>Herbig, Utz</creatorcontrib><creatorcontrib>Schmitt, Clemens A.</creatorcontrib><creatorcontrib>Gil, Jesús</creatorcontrib><creatorcontrib>Bischof, Oliver</creatorcontrib><title>AP-1 imprints a reversible transcriptional programme of senescent cells</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>NAT CELL BIOL</addtitle><addtitle>Nat Cell Biol</addtitle><description>Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications. Bischof and colleagues report that AP-1 bookmarks prospective senescence enhancers for future activation to achieve a timely execution of the senescence programme.</description><subject>13/1</subject><subject>13/106</subject><subject>13/31</subject><subject>14</subject><subject>14/19</subject><subject>38/22</subject><subject>38/77</subject><subject>38/89</subject><subject>42/109</subject><subject>42/41</subject><subject>45/15</subject><subject>45/23</subject><subject>45/61</subject><subject>631/114/2114</subject><subject>631/114/2163</subject><subject>631/337/100/2285</subject><subject>631/337/2019</subject><subject>631/80/509</subject><subject>64/60</subject><subject>Activator protein 1</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell fate</subject><subject>Cellular Senescence</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Developmental Biology</subject><subject>Enhancers</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Genetic transcription</subject><subject>Health aspects</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mice, Inbred C57BL</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Science &amp; Technology</subject><subject>Scientific equipment and supplies industry</subject><subject>Senescence</subject><subject>Stem Cells</subject><subject>Therapeutic targets</subject><subject>Transcription Factor AP-1</subject><subject>Transcription Factor AP-1 - genetics</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwA7igSFyoUIq_k1wqrVbQVloJxMfZcpJx6iqxFztZ4N9jK2XpVoCIDxmNn3c8Hr9Z9hyjM4xo9SYwzLkoEEEF4qQu-IPsGLNSFEyU9cMUC16UtCZH2ZMQbhDCjKHycXZECccxwsfZxepDgXMzbr2xU8hV7mEHPphmgHzyyobWm-1knFVDvvWu92ocIXc6D2AhtGCnvIVhCE-zR1oNAZ7d_k-yL-_efl5fFpv3F1fr1aZoBaVTQZuWIaF5RVQjWIN1C4xRWvKag2qqhjRcVx3RjdKq6zjEJHBOtWo61UHV0ZPsfKm7nZsRutSAV4OM7Y_K_5BOGXm4Y8217N1OllVd44rHAqdLget7ssvVRqYcoojEIdIdjuyr28O8-zpDmORoQrqusuDmIAnD8UMcsYi-vIfeuNnHqUWqJCVGiAjxT4oRRCmt8Z1avRpAGqtdvEmbjpYrQaqyYlik5s7-QMXVwWhaZ0GbmD8QnB4IIjPB96lXcwjy6tPHQxYvbOtdCB70flQYyeQ9uXhPRu_J5D2ZJvvi7tPsFb_MFoFqAb5B43RoDdgW9hhCiNOqFlzECOG1mVTy3drNdorS1_8vjTRZ6JBs3YP_Pea_t_8TIqICxA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Martínez-Zamudio, Ricardo Iván</creator><creator>Roux, Pierre-François</creator><creator>de Freitas, José Américo N.L.F.</creator><creator>Robinson, Lucas</creator><creator>Doré, Gregory</creator><creator>Sun, Bin</creator><creator>Belenki, Dimitri</creator><creator>Milanovic, Maja</creator><creator>Herbig, Utz</creator><creator>Schmitt, Clemens A.</creator><creator>Gil, Jesús</creator><creator>Bischof, Oliver</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8963-4100</orcidid><orcidid>https://orcid.org/0000-0003-3689-765X</orcidid><orcidid>https://orcid.org/0000-0003-2422-6277</orcidid><orcidid>https://orcid.org/0000-0001-9202-4285</orcidid><orcidid>https://orcid.org/0000-0002-9004-9849</orcidid><orcidid>https://orcid.org/0000-0003-1860-6003</orcidid><orcidid>https://orcid.org/0000-0002-4303-6260</orcidid><orcidid>https://orcid.org/0000-0002-4731-2226</orcidid><orcidid>https://orcid.org/0000-0002-0695-4206</orcidid><orcidid>https://orcid.org/0000-0003-1051-6011</orcidid></search><sort><creationdate>20200701</creationdate><title>AP-1 imprints a reversible transcriptional programme of senescent cells</title><author>Martínez-Zamudio, Ricardo Iván ; Roux, Pierre-François ; de Freitas, José Américo N.L.F. ; Robinson, Lucas ; Doré, Gregory ; Sun, Bin ; Belenki, Dimitri ; Milanovic, Maja ; Herbig, Utz ; Schmitt, Clemens A. ; Gil, Jesús ; Bischof, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-3bc406f582ab64b1fce44337595eab8b2b5f8d2fbafadd5eeabe553fabdade8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/31</topic><topic>14</topic><topic>14/19</topic><topic>38/22</topic><topic>38/77</topic><topic>38/89</topic><topic>42/109</topic><topic>42/41</topic><topic>45/15</topic><topic>45/23</topic><topic>45/61</topic><topic>631/114/2114</topic><topic>631/114/2163</topic><topic>631/337/100/2285</topic><topic>631/337/2019</topic><topic>631/80/509</topic><topic>64/60</topic><topic>Activator protein 1</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell fate</topic><topic>Cellular Senescence</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Developmental Biology</topic><topic>Enhancers</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Genetic transcription</topic><topic>Health aspects</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mice, Inbred C57BL</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Science &amp; Technology</topic><topic>Scientific equipment and supplies industry</topic><topic>Senescence</topic><topic>Stem Cells</topic><topic>Therapeutic targets</topic><topic>Transcription Factor AP-1</topic><topic>Transcription Factor AP-1 - genetics</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Zamudio, Ricardo Iván</creatorcontrib><creatorcontrib>Roux, Pierre-François</creatorcontrib><creatorcontrib>de Freitas, José Américo N.L.F.</creatorcontrib><creatorcontrib>Robinson, Lucas</creatorcontrib><creatorcontrib>Doré, Gregory</creatorcontrib><creatorcontrib>Sun, Bin</creatorcontrib><creatorcontrib>Belenki, Dimitri</creatorcontrib><creatorcontrib>Milanovic, Maja</creatorcontrib><creatorcontrib>Herbig, Utz</creatorcontrib><creatorcontrib>Schmitt, Clemens A.</creatorcontrib><creatorcontrib>Gil, Jesús</creatorcontrib><creatorcontrib>Bischof, Oliver</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Zamudio, Ricardo Iván</au><au>Roux, Pierre-François</au><au>de Freitas, José Américo N.L.F.</au><au>Robinson, Lucas</au><au>Doré, Gregory</au><au>Sun, Bin</au><au>Belenki, Dimitri</au><au>Milanovic, Maja</au><au>Herbig, Utz</au><au>Schmitt, Clemens A.</au><au>Gil, Jesús</au><au>Bischof, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AP-1 imprints a reversible transcriptional programme of senescent cells</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><stitle>NAT CELL BIOL</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>22</volume><issue>7</issue><spage>842</spage><epage>855</epage><pages>842-855</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications. Bischof and colleagues report that AP-1 bookmarks prospective senescence enhancers for future activation to achieve a timely execution of the senescence programme.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32514071</pmid><doi>10.1038/s41556-020-0529-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8963-4100</orcidid><orcidid>https://orcid.org/0000-0003-3689-765X</orcidid><orcidid>https://orcid.org/0000-0003-2422-6277</orcidid><orcidid>https://orcid.org/0000-0001-9202-4285</orcidid><orcidid>https://orcid.org/0000-0002-9004-9849</orcidid><orcidid>https://orcid.org/0000-0003-1860-6003</orcidid><orcidid>https://orcid.org/0000-0002-4303-6260</orcidid><orcidid>https://orcid.org/0000-0002-4731-2226</orcidid><orcidid>https://orcid.org/0000-0002-0695-4206</orcidid><orcidid>https://orcid.org/0000-0003-1051-6011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2020-07, Vol.22 (7), p.842-855
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7899185
source MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 13/1
13/106
13/31
14
14/19
38/22
38/77
38/89
42/109
42/41
45/15
45/23
45/61
631/114/2114
631/114/2163
631/337/100/2285
631/337/2019
631/80/509
64/60
Activator protein 1
Analysis
Animals
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell culture
Cell fate
Cellular Senescence
Chromatin
Chromatin - genetics
Chromatin - metabolism
Developmental Biology
Enhancers
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Female
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Gene Expression Regulation
Genetic transcription
Health aspects
Histones
Histones - genetics
Histones - metabolism
Humans
Life Sciences
Life Sciences & Biomedicine
Mice, Inbred C57BL
Phenotypes
Physiological aspects
Science & Technology
Scientific equipment and supplies industry
Senescence
Stem Cells
Therapeutic targets
Transcription Factor AP-1
Transcription Factor AP-1 - genetics
Transcription Factor AP-1 - metabolism
Transcription factors
Transcriptome
Transcriptomes
title AP-1 imprints a reversible transcriptional programme of senescent cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AP-1%20imprints%20a%20reversible%20transcriptional%20programme%20of%20senescent%20cells&rft.jtitle=Nature%20cell%20biology&rft.au=Mart%C3%ADnez-Zamudio,%20Ricardo%20Iv%C3%A1n&rft.date=2020-07-01&rft.volume=22&rft.issue=7&rft.spage=842&rft.epage=855&rft.pages=842-855&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-020-0529-5&rft_dat=%3Cgale_pubme%3EA628784161%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420333914&rft_id=info:pmid/32514071&rft_galeid=A628784161&rfr_iscdi=true