Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS
Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in foo...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2021-02, Vol.42 (4), p.473-481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 4 |
container_start_page | 473 |
container_title | Electrophoresis |
container_volume | 42 |
creator | Delgado‐Povedano, María del Mar Villiers, André Hann, Stephan Causon, Tim |
description | Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform. |
doi_str_mv | 10.1002/elps.202000274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488494387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</originalsourceid><addsrcrecordid>eNqFkctOGzEYhS1UBOGyZVmN1E03E3wd25tKKFyaKggQsLY8Hk8xmtjBnhTNjkdA6hvyJHUUGrXddPNbv_z56BwfAI4QHCMI8bHtFmmMIYZ54XQLjBDDuMSVIB_ACCJOSigI2wV7KT1mhkpKd8AuIUgIRtkIfJs21veuHwoTfOviXPcu-CK0hfb9QzCD9s6nwvmitjE6m4p6KGaTt5efpyeneU4v315eb-6uzi9vD8B2q7tkD9_PfXB_fnY3-VrOri6mk5NZaVg2WUqsa2mklNgYDaWAuml5XTU1RJTBxhBLELWWVIhpTbVlkiMLq4prKivCDNkHX9a6i2U9t43J_qPu1CK6uY6DCtqpv2-8e1Dfww_FhRRciizw-V0ghqelTb2au2Rs12lvwzIpTCvIK0opz-inf9DHsIw-x8uUEPk7iVhR4zVlYkgp2nZjBkG1qkmtalKbmvKDj39G2OC_e8kAXQPPrrPDf-TU2ez6lhOEyS8jraAb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488494387</pqid></control><display><type>article</type><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><source>Wiley Online Library All Journals</source><creator>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</creator><creatorcontrib>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</creatorcontrib><description>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202000274</identifier><identifier>PMID: 33188545</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Alignment ; Anthocyanins ; Berries ; Confirmation ; Drift tubes ; Identity ; Ion mobility‐mass spectrometry ; Ionic mobility ; Natural products ; Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis ; Phenols ; Screening ; Spectrometry</subject><ispartof>Electrophoresis, 2021-02, Vol.42 (4), p.473-481</ispartof><rights>2020 The Authors. published by Wiley‐VCH GmbH</rights><rights>2020 The Authors. Electrophoresis published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</citedby><cites>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</cites><orcidid>0000-0001-6212-1439 ; 0000-0001-5045-7293 ; 0000-0001-8589-0812 ; 0000-0003-1373-7493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.202000274$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.202000274$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33188545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado‐Povedano, María del Mar</creatorcontrib><creatorcontrib>Villiers, André</creatorcontrib><creatorcontrib>Hann, Stephan</creatorcontrib><creatorcontrib>Causon, Tim</creatorcontrib><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</description><subject>Absorption spectra</subject><subject>Alignment</subject><subject>Anthocyanins</subject><subject>Berries</subject><subject>Confirmation</subject><subject>Drift tubes</subject><subject>Identity</subject><subject>Ion mobility‐mass spectrometry</subject><subject>Ionic mobility</subject><subject>Natural products</subject><subject>Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis</subject><subject>Phenols</subject><subject>Screening</subject><subject>Spectrometry</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOGzEYhS1UBOGyZVmN1E03E3wd25tKKFyaKggQsLY8Hk8xmtjBnhTNjkdA6hvyJHUUGrXddPNbv_z56BwfAI4QHCMI8bHtFmmMIYZ54XQLjBDDuMSVIB_ACCJOSigI2wV7KT1mhkpKd8AuIUgIRtkIfJs21veuHwoTfOviXPcu-CK0hfb9QzCD9s6nwvmitjE6m4p6KGaTt5efpyeneU4v315eb-6uzi9vD8B2q7tkD9_PfXB_fnY3-VrOri6mk5NZaVg2WUqsa2mklNgYDaWAuml5XTU1RJTBxhBLELWWVIhpTbVlkiMLq4prKivCDNkHX9a6i2U9t43J_qPu1CK6uY6DCtqpv2-8e1Dfww_FhRRciizw-V0ghqelTb2au2Rs12lvwzIpTCvIK0opz-inf9DHsIw-x8uUEPk7iVhR4zVlYkgp2nZjBkG1qkmtalKbmvKDj39G2OC_e8kAXQPPrrPDf-TU2ez6lhOEyS8jraAb</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Delgado‐Povedano, María del Mar</creator><creator>Villiers, André</creator><creator>Hann, Stephan</creator><creator>Causon, Tim</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6212-1439</orcidid><orcidid>https://orcid.org/0000-0001-5045-7293</orcidid><orcidid>https://orcid.org/0000-0001-8589-0812</orcidid><orcidid>https://orcid.org/0000-0003-1373-7493</orcidid></search><sort><creationdate>202102</creationdate><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><author>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Alignment</topic><topic>Anthocyanins</topic><topic>Berries</topic><topic>Confirmation</topic><topic>Drift tubes</topic><topic>Identity</topic><topic>Ion mobility‐mass spectrometry</topic><topic>Ionic mobility</topic><topic>Natural products</topic><topic>Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis</topic><topic>Phenols</topic><topic>Screening</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado‐Povedano, María del Mar</creatorcontrib><creatorcontrib>Villiers, André</creatorcontrib><creatorcontrib>Hann, Stephan</creatorcontrib><creatorcontrib>Causon, Tim</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado‐Povedano, María del Mar</au><au>Villiers, André</au><au>Hann, Stephan</au><au>Causon, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2021-02</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>473</spage><epage>481</epage><pages>473-481</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33188545</pmid><doi>10.1002/elps.202000274</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6212-1439</orcidid><orcidid>https://orcid.org/0000-0001-5045-7293</orcidid><orcidid>https://orcid.org/0000-0001-8589-0812</orcidid><orcidid>https://orcid.org/0000-0003-1373-7493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2021-02, Vol.42 (4), p.473-481 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898798 |
source | Wiley Online Library All Journals |
subjects | Absorption spectra Alignment Anthocyanins Berries Confirmation Drift tubes Identity Ion mobility‐mass spectrometry Ionic mobility Natural products Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis Phenols Screening Spectrometry |
title | Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identity%20confirmation%20of%20anthocyanins%20in%20berries%20by%20LC%E2%80%93DAD%E2%80%93IM%E2%80%90QTOFMS&rft.jtitle=Electrophoresis&rft.au=Delgado%E2%80%90Povedano,%20Mar%C3%ADa%20del%20Mar&rft.date=2021-02&rft.volume=42&rft.issue=4&rft.spage=473&rft.epage=481&rft.pages=473-481&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202000274&rft_dat=%3Cproquest_pubme%3E2488494387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488494387&rft_id=info:pmid/33188545&rfr_iscdi=true |