Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS

Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in foo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2021-02, Vol.42 (4), p.473-481
Hauptverfasser: Delgado‐Povedano, María del Mar, Villiers, André, Hann, Stephan, Causon, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 4
container_start_page 473
container_title Electrophoresis
container_volume 42
creator Delgado‐Povedano, María del Mar
Villiers, André
Hann, Stephan
Causon, Tim
description Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.
doi_str_mv 10.1002/elps.202000274
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488494387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</originalsourceid><addsrcrecordid>eNqFkctOGzEYhS1UBOGyZVmN1E03E3wd25tKKFyaKggQsLY8Hk8xmtjBnhTNjkdA6hvyJHUUGrXddPNbv_z56BwfAI4QHCMI8bHtFmmMIYZ54XQLjBDDuMSVIB_ACCJOSigI2wV7KT1mhkpKd8AuIUgIRtkIfJs21veuHwoTfOviXPcu-CK0hfb9QzCD9s6nwvmitjE6m4p6KGaTt5efpyeneU4v315eb-6uzi9vD8B2q7tkD9_PfXB_fnY3-VrOri6mk5NZaVg2WUqsa2mklNgYDaWAuml5XTU1RJTBxhBLELWWVIhpTbVlkiMLq4prKivCDNkHX9a6i2U9t43J_qPu1CK6uY6DCtqpv2-8e1Dfww_FhRRciizw-V0ghqelTb2au2Rs12lvwzIpTCvIK0opz-inf9DHsIw-x8uUEPk7iVhR4zVlYkgp2nZjBkG1qkmtalKbmvKDj39G2OC_e8kAXQPPrrPDf-TU2ez6lhOEyS8jraAb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488494387</pqid></control><display><type>article</type><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><source>Wiley Online Library All Journals</source><creator>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</creator><creatorcontrib>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</creatorcontrib><description>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202000274</identifier><identifier>PMID: 33188545</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Alignment ; Anthocyanins ; Berries ; Confirmation ; Drift tubes ; Identity ; Ion mobility‐mass spectrometry ; Ionic mobility ; Natural products ; Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis ; Phenols ; Screening ; Spectrometry</subject><ispartof>Electrophoresis, 2021-02, Vol.42 (4), p.473-481</ispartof><rights>2020 The Authors. published by Wiley‐VCH GmbH</rights><rights>2020 The Authors. Electrophoresis published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</citedby><cites>FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</cites><orcidid>0000-0001-6212-1439 ; 0000-0001-5045-7293 ; 0000-0001-8589-0812 ; 0000-0003-1373-7493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.202000274$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.202000274$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33188545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado‐Povedano, María del Mar</creatorcontrib><creatorcontrib>Villiers, André</creatorcontrib><creatorcontrib>Hann, Stephan</creatorcontrib><creatorcontrib>Causon, Tim</creatorcontrib><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</description><subject>Absorption spectra</subject><subject>Alignment</subject><subject>Anthocyanins</subject><subject>Berries</subject><subject>Confirmation</subject><subject>Drift tubes</subject><subject>Identity</subject><subject>Ion mobility‐mass spectrometry</subject><subject>Ionic mobility</subject><subject>Natural products</subject><subject>Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis</subject><subject>Phenols</subject><subject>Screening</subject><subject>Spectrometry</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOGzEYhS1UBOGyZVmN1E03E3wd25tKKFyaKggQsLY8Hk8xmtjBnhTNjkdA6hvyJHUUGrXddPNbv_z56BwfAI4QHCMI8bHtFmmMIYZ54XQLjBDDuMSVIB_ACCJOSigI2wV7KT1mhkpKd8AuIUgIRtkIfJs21veuHwoTfOviXPcu-CK0hfb9QzCD9s6nwvmitjE6m4p6KGaTt5efpyeneU4v315eb-6uzi9vD8B2q7tkD9_PfXB_fnY3-VrOri6mk5NZaVg2WUqsa2mklNgYDaWAuml5XTU1RJTBxhBLELWWVIhpTbVlkiMLq4prKivCDNkHX9a6i2U9t43J_qPu1CK6uY6DCtqpv2-8e1Dfww_FhRRciizw-V0ghqelTb2au2Rs12lvwzIpTCvIK0opz-inf9DHsIw-x8uUEPk7iVhR4zVlYkgp2nZjBkG1qkmtalKbmvKDj39G2OC_e8kAXQPPrrPDf-TU2ez6lhOEyS8jraAb</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Delgado‐Povedano, María del Mar</creator><creator>Villiers, André</creator><creator>Hann, Stephan</creator><creator>Causon, Tim</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6212-1439</orcidid><orcidid>https://orcid.org/0000-0001-5045-7293</orcidid><orcidid>https://orcid.org/0000-0001-8589-0812</orcidid><orcidid>https://orcid.org/0000-0003-1373-7493</orcidid></search><sort><creationdate>202102</creationdate><title>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</title><author>Delgado‐Povedano, María del Mar ; Villiers, André ; Hann, Stephan ; Causon, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5002-92ab9c9992cca0980adf7b6db01450dc3e314ee3615aa4ae5971e0667a49635c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Alignment</topic><topic>Anthocyanins</topic><topic>Berries</topic><topic>Confirmation</topic><topic>Drift tubes</topic><topic>Identity</topic><topic>Ion mobility‐mass spectrometry</topic><topic>Ionic mobility</topic><topic>Natural products</topic><topic>Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis</topic><topic>Phenols</topic><topic>Screening</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado‐Povedano, María del Mar</creatorcontrib><creatorcontrib>Villiers, André</creatorcontrib><creatorcontrib>Hann, Stephan</creatorcontrib><creatorcontrib>Causon, Tim</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado‐Povedano, María del Mar</au><au>Villiers, André</au><au>Hann, Stephan</au><au>Causon, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2021-02</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>473</spage><epage>481</epage><pages>473-481</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low‐field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC–DAD–DTIM–QTOFMS method. DTIM‐MS allows accurate determination of collision cross sections (DTCCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DTCCSN2, and confirmed high‐resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC–IM–MS platform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33188545</pmid><doi>10.1002/elps.202000274</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6212-1439</orcidid><orcidid>https://orcid.org/0000-0001-5045-7293</orcidid><orcidid>https://orcid.org/0000-0001-8589-0812</orcidid><orcidid>https://orcid.org/0000-0003-1373-7493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2021-02, Vol.42 (4), p.473-481
issn 0173-0835
1522-2683
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898798
source Wiley Online Library All Journals
subjects Absorption spectra
Alignment
Anthocyanins
Berries
Confirmation
Drift tubes
Identity
Ion mobility‐mass spectrometry
Ionic mobility
Natural products
Part III: CE‐MS and LC‐MS Applications in Food, Environmental, and Technical Product Analysis
Phenols
Screening
Spectrometry
title Identity confirmation of anthocyanins in berries by LC–DAD–IM‐QTOFMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identity%20confirmation%20of%20anthocyanins%20in%20berries%20by%20LC%E2%80%93DAD%E2%80%93IM%E2%80%90QTOFMS&rft.jtitle=Electrophoresis&rft.au=Delgado%E2%80%90Povedano,%20Mar%C3%ADa%20del%20Mar&rft.date=2021-02&rft.volume=42&rft.issue=4&rft.spage=473&rft.epage=481&rft.pages=473-481&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202000274&rft_dat=%3Cproquest_pubme%3E2488494387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488494387&rft_id=info:pmid/33188545&rfr_iscdi=true