Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system
Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimu...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2021-05, Vol.85 (5), p.2370-2376 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2376 |
---|---|
container_issue | 5 |
container_start_page | 2370 |
container_title | Magnetic resonance in medicine |
container_volume | 85 |
creator | McLean, Mary A. Hinks, R. Scott Kaggie, Joshua D. Woitek, Ramona Riemer, Frank Graves, Martin J. McIntyre, Dominick J. O. Gallagher, Ferdia A. Schulte, Rolf F. |
description | Purpose
The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this.
Methods
Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na).
Results
Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories).
Conclusion
A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging. |
doi_str_mv | 10.1002/mrm.28607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467615727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhoModq1e-AIS8EYvpj3JZOckN4IsVoUuQlHwLmQziU2ZyazJjDLe1EfwGX0Ss7u1qOBVCP-Xj3PyE_KYwQkD4Kd96k-4bADvkAVbcl7xpRJ3yQJQQFUzJY7Ig5yvAEApFPfJUV1zFKhgQa5XlyYZO7oUvpkxDJGa2FI7pOTs_jp4al0s-c_vP3xynycX7Uyd9yXPNET6sQRxsp0zibq2namdyuM4Fkm_dTHvrZnuzNR2IQZrOrq-oHnOo-sfknvedNk9ujmPyYezV-9Xb6rzd6_frl6eV1aIGiuUvGXghfXKsbphHlChbcEoQFmzlvENeO4EyiWDRiIaa2vZComtZxsU9TF5cfBup03v2t1KyXR6m0Jv0qwHE_TfSQyX-tPwRaNUEqEpgmc3gjSUT8ij7kO2rutMdMOUNRcNNmyJHAv69B_0aphSLOsVSgqGoDgr1PMDZdOQc3L-dhgGelerLrXqfa2FffLn9Lfk7x4LcHoAvobOzf836fXF-qD8BVB9sH8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484170921</pqid></control><display><type>article</type><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</creator><creatorcontrib>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</creatorcontrib><description>Purpose
The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this.
Methods
Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na).
Results
Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories).
Conclusion
A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28607</identifier><identifier>PMID: 33274790</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Brain ; Calibration ; carbon‐13 ; Cartesian coordinates ; Compensation ; Cones ; Eddy currents ; Gyromagnetic ratio ; image artifacts ; Imaging ; Magnetic Resonance Imaging ; magnetic resonance spectroscopy ; MRI ; Notes—Spectroscopic Methodology ; Nuclei ; Phantoms, Imaging ; phosphorus‐31 ; sodium‐23 ; Spectroscopy ; Spectrum analysis ; X‐nuclei</subject><ispartof>Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2370-2376</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</citedby><cites>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</cites><orcidid>0000-0002-3805-5221 ; 0000-0002-1334-1264 ; 0000-0003-4784-5230 ; 0000-0002-3752-0179 ; 0000-0002-9146-9159 ; 0000-0003-4327-3052 ; 0000-0001-6706-3442 ; 0000-0002-0269-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28607$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28607$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33274790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLean, Mary A.</creatorcontrib><creatorcontrib>Hinks, R. Scott</creatorcontrib><creatorcontrib>Kaggie, Joshua D.</creatorcontrib><creatorcontrib>Woitek, Ramona</creatorcontrib><creatorcontrib>Riemer, Frank</creatorcontrib><creatorcontrib>Graves, Martin J.</creatorcontrib><creatorcontrib>McIntyre, Dominick J. O.</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Schulte, Rolf F.</creatorcontrib><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this.
Methods
Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na).
Results
Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories).
Conclusion
A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Calibration</subject><subject>carbon‐13</subject><subject>Cartesian coordinates</subject><subject>Compensation</subject><subject>Cones</subject><subject>Eddy currents</subject><subject>Gyromagnetic ratio</subject><subject>image artifacts</subject><subject>Imaging</subject><subject>Magnetic Resonance Imaging</subject><subject>magnetic resonance spectroscopy</subject><subject>MRI</subject><subject>Notes—Spectroscopic Methodology</subject><subject>Nuclei</subject><subject>Phantoms, Imaging</subject><subject>phosphorus‐31</subject><subject>sodium‐23</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>X‐nuclei</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kdFqFDEUhoModq1e-AIS8EYvpj3JZOckN4IsVoUuQlHwLmQziU2ZyazJjDLe1EfwGX0Ss7u1qOBVCP-Xj3PyE_KYwQkD4Kd96k-4bADvkAVbcl7xpRJ3yQJQQFUzJY7Ig5yvAEApFPfJUV1zFKhgQa5XlyYZO7oUvpkxDJGa2FI7pOTs_jp4al0s-c_vP3xynycX7Uyd9yXPNET6sQRxsp0zibq2namdyuM4Fkm_dTHvrZnuzNR2IQZrOrq-oHnOo-sfknvedNk9ujmPyYezV-9Xb6rzd6_frl6eV1aIGiuUvGXghfXKsbphHlChbcEoQFmzlvENeO4EyiWDRiIaa2vZComtZxsU9TF5cfBup03v2t1KyXR6m0Jv0qwHE_TfSQyX-tPwRaNUEqEpgmc3gjSUT8ij7kO2rutMdMOUNRcNNmyJHAv69B_0aphSLOsVSgqGoDgr1PMDZdOQc3L-dhgGelerLrXqfa2FffLn9Lfk7x4LcHoAvobOzf836fXF-qD8BVB9sH8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>McLean, Mary A.</creator><creator>Hinks, R. Scott</creator><creator>Kaggie, Joshua D.</creator><creator>Woitek, Ramona</creator><creator>Riemer, Frank</creator><creator>Graves, Martin J.</creator><creator>McIntyre, Dominick J. O.</creator><creator>Gallagher, Ferdia A.</creator><creator>Schulte, Rolf F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3805-5221</orcidid><orcidid>https://orcid.org/0000-0002-1334-1264</orcidid><orcidid>https://orcid.org/0000-0003-4784-5230</orcidid><orcidid>https://orcid.org/0000-0002-3752-0179</orcidid><orcidid>https://orcid.org/0000-0002-9146-9159</orcidid><orcidid>https://orcid.org/0000-0003-4327-3052</orcidid><orcidid>https://orcid.org/0000-0001-6706-3442</orcidid><orcidid>https://orcid.org/0000-0002-0269-6545</orcidid></search><sort><creationdate>202105</creationdate><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><author>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Calibration</topic><topic>carbon‐13</topic><topic>Cartesian coordinates</topic><topic>Compensation</topic><topic>Cones</topic><topic>Eddy currents</topic><topic>Gyromagnetic ratio</topic><topic>image artifacts</topic><topic>Imaging</topic><topic>Magnetic Resonance Imaging</topic><topic>magnetic resonance spectroscopy</topic><topic>MRI</topic><topic>Notes—Spectroscopic Methodology</topic><topic>Nuclei</topic><topic>Phantoms, Imaging</topic><topic>phosphorus‐31</topic><topic>sodium‐23</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>X‐nuclei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLean, Mary A.</creatorcontrib><creatorcontrib>Hinks, R. Scott</creatorcontrib><creatorcontrib>Kaggie, Joshua D.</creatorcontrib><creatorcontrib>Woitek, Ramona</creatorcontrib><creatorcontrib>Riemer, Frank</creatorcontrib><creatorcontrib>Graves, Martin J.</creatorcontrib><creatorcontrib>McIntyre, Dominick J. O.</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Schulte, Rolf F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLean, Mary A.</au><au>Hinks, R. Scott</au><au>Kaggie, Joshua D.</au><au>Woitek, Ramona</au><au>Riemer, Frank</au><au>Graves, Martin J.</au><au>McIntyre, Dominick J. O.</au><au>Gallagher, Ferdia A.</au><au>Schulte, Rolf F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-05</date><risdate>2021</risdate><volume>85</volume><issue>5</issue><spage>2370</spage><epage>2376</epage><pages>2370-2376</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this.
Methods
Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na).
Results
Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories).
Conclusion
A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33274790</pmid><doi>10.1002/mrm.28607</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3805-5221</orcidid><orcidid>https://orcid.org/0000-0002-1334-1264</orcidid><orcidid>https://orcid.org/0000-0003-4784-5230</orcidid><orcidid>https://orcid.org/0000-0002-3752-0179</orcidid><orcidid>https://orcid.org/0000-0002-9146-9159</orcidid><orcidid>https://orcid.org/0000-0003-4327-3052</orcidid><orcidid>https://orcid.org/0000-0001-6706-3442</orcidid><orcidid>https://orcid.org/0000-0002-0269-6545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2370-2376 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898706 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Brain Calibration carbon‐13 Cartesian coordinates Compensation Cones Eddy currents Gyromagnetic ratio image artifacts Imaging Magnetic Resonance Imaging magnetic resonance spectroscopy MRI Notes—Spectroscopic Methodology Nuclei Phantoms, Imaging phosphorus‐31 sodium‐23 Spectroscopy Spectrum analysis X‐nuclei |
title | Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20correction%20of%20center%E2%80%90frequency%20effects%20in%20X%E2%80%90nuclear%20eddy%20current%20compensations%20on%20a%20clinical%20MR%20system&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=McLean,%20Mary%20A.&rft.date=2021-05&rft.volume=85&rft.issue=5&rft.spage=2370&rft.epage=2376&rft.pages=2370-2376&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28607&rft_dat=%3Cproquest_pubme%3E2467615727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484170921&rft_id=info:pmid/33274790&rfr_iscdi=true |