Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system

Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2021-05, Vol.85 (5), p.2370-2376
Hauptverfasser: McLean, Mary A., Hinks, R. Scott, Kaggie, Joshua D., Woitek, Ramona, Riemer, Frank, Graves, Martin J., McIntyre, Dominick J. O., Gallagher, Ferdia A., Schulte, Rolf F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2376
container_issue 5
container_start_page 2370
container_title Magnetic resonance in medicine
container_volume 85
creator McLean, Mary A.
Hinks, R. Scott
Kaggie, Joshua D.
Woitek, Ramona
Riemer, Frank
Graves, Martin J.
McIntyre, Dominick J. O.
Gallagher, Ferdia A.
Schulte, Rolf F.
description Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na). Results Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories). Conclusion A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.
doi_str_mv 10.1002/mrm.28607
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467615727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhoModq1e-AIS8EYvpj3JZOckN4IsVoUuQlHwLmQziU2ZyazJjDLe1EfwGX0Ss7u1qOBVCP-Xj3PyE_KYwQkD4Kd96k-4bADvkAVbcl7xpRJ3yQJQQFUzJY7Ig5yvAEApFPfJUV1zFKhgQa5XlyYZO7oUvpkxDJGa2FI7pOTs_jp4al0s-c_vP3xynycX7Uyd9yXPNET6sQRxsp0zibq2namdyuM4Fkm_dTHvrZnuzNR2IQZrOrq-oHnOo-sfknvedNk9ujmPyYezV-9Xb6rzd6_frl6eV1aIGiuUvGXghfXKsbphHlChbcEoQFmzlvENeO4EyiWDRiIaa2vZComtZxsU9TF5cfBup03v2t1KyXR6m0Jv0qwHE_TfSQyX-tPwRaNUEqEpgmc3gjSUT8ij7kO2rutMdMOUNRcNNmyJHAv69B_0aphSLOsVSgqGoDgr1PMDZdOQc3L-dhgGelerLrXqfa2FffLn9Lfk7x4LcHoAvobOzf836fXF-qD8BVB9sH8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484170921</pqid></control><display><type>article</type><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</creator><creatorcontrib>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</creatorcontrib><description>Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na). Results Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories). Conclusion A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28607</identifier><identifier>PMID: 33274790</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Brain ; Calibration ; carbon‐13 ; Cartesian coordinates ; Compensation ; Cones ; Eddy currents ; Gyromagnetic ratio ; image artifacts ; Imaging ; Magnetic Resonance Imaging ; magnetic resonance spectroscopy ; MRI ; Notes—Spectroscopic Methodology ; Nuclei ; Phantoms, Imaging ; phosphorus‐31 ; sodium‐23 ; Spectroscopy ; Spectrum analysis ; X‐nuclei</subject><ispartof>Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2370-2376</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine</rights><rights>2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</citedby><cites>FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</cites><orcidid>0000-0002-3805-5221 ; 0000-0002-1334-1264 ; 0000-0003-4784-5230 ; 0000-0002-3752-0179 ; 0000-0002-9146-9159 ; 0000-0003-4327-3052 ; 0000-0001-6706-3442 ; 0000-0002-0269-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28607$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28607$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33274790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLean, Mary A.</creatorcontrib><creatorcontrib>Hinks, R. Scott</creatorcontrib><creatorcontrib>Kaggie, Joshua D.</creatorcontrib><creatorcontrib>Woitek, Ramona</creatorcontrib><creatorcontrib>Riemer, Frank</creatorcontrib><creatorcontrib>Graves, Martin J.</creatorcontrib><creatorcontrib>McIntyre, Dominick J. O.</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Schulte, Rolf F.</creatorcontrib><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na). Results Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories). Conclusion A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Calibration</subject><subject>carbon‐13</subject><subject>Cartesian coordinates</subject><subject>Compensation</subject><subject>Cones</subject><subject>Eddy currents</subject><subject>Gyromagnetic ratio</subject><subject>image artifacts</subject><subject>Imaging</subject><subject>Magnetic Resonance Imaging</subject><subject>magnetic resonance spectroscopy</subject><subject>MRI</subject><subject>Notes—Spectroscopic Methodology</subject><subject>Nuclei</subject><subject>Phantoms, Imaging</subject><subject>phosphorus‐31</subject><subject>sodium‐23</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>X‐nuclei</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kdFqFDEUhoModq1e-AIS8EYvpj3JZOckN4IsVoUuQlHwLmQziU2ZyazJjDLe1EfwGX0Ss7u1qOBVCP-Xj3PyE_KYwQkD4Kd96k-4bADvkAVbcl7xpRJ3yQJQQFUzJY7Ig5yvAEApFPfJUV1zFKhgQa5XlyYZO7oUvpkxDJGa2FI7pOTs_jp4al0s-c_vP3xynycX7Uyd9yXPNET6sQRxsp0zibq2namdyuM4Fkm_dTHvrZnuzNR2IQZrOrq-oHnOo-sfknvedNk9ujmPyYezV-9Xb6rzd6_frl6eV1aIGiuUvGXghfXKsbphHlChbcEoQFmzlvENeO4EyiWDRiIaa2vZComtZxsU9TF5cfBup03v2t1KyXR6m0Jv0qwHE_TfSQyX-tPwRaNUEqEpgmc3gjSUT8ij7kO2rutMdMOUNRcNNmyJHAv69B_0aphSLOsVSgqGoDgr1PMDZdOQc3L-dhgGelerLrXqfa2FffLn9Lfk7x4LcHoAvobOzf836fXF-qD8BVB9sH8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>McLean, Mary A.</creator><creator>Hinks, R. Scott</creator><creator>Kaggie, Joshua D.</creator><creator>Woitek, Ramona</creator><creator>Riemer, Frank</creator><creator>Graves, Martin J.</creator><creator>McIntyre, Dominick J. O.</creator><creator>Gallagher, Ferdia A.</creator><creator>Schulte, Rolf F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3805-5221</orcidid><orcidid>https://orcid.org/0000-0002-1334-1264</orcidid><orcidid>https://orcid.org/0000-0003-4784-5230</orcidid><orcidid>https://orcid.org/0000-0002-3752-0179</orcidid><orcidid>https://orcid.org/0000-0002-9146-9159</orcidid><orcidid>https://orcid.org/0000-0003-4327-3052</orcidid><orcidid>https://orcid.org/0000-0001-6706-3442</orcidid><orcidid>https://orcid.org/0000-0002-0269-6545</orcidid></search><sort><creationdate>202105</creationdate><title>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</title><author>McLean, Mary A. ; Hinks, R. Scott ; Kaggie, Joshua D. ; Woitek, Ramona ; Riemer, Frank ; Graves, Martin J. ; McIntyre, Dominick J. O. ; Gallagher, Ferdia A. ; Schulte, Rolf F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-782d10f4cf9e1361f0797cd0a907831d12b0f2e4785106877acc38d487df1b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Calibration</topic><topic>carbon‐13</topic><topic>Cartesian coordinates</topic><topic>Compensation</topic><topic>Cones</topic><topic>Eddy currents</topic><topic>Gyromagnetic ratio</topic><topic>image artifacts</topic><topic>Imaging</topic><topic>Magnetic Resonance Imaging</topic><topic>magnetic resonance spectroscopy</topic><topic>MRI</topic><topic>Notes—Spectroscopic Methodology</topic><topic>Nuclei</topic><topic>Phantoms, Imaging</topic><topic>phosphorus‐31</topic><topic>sodium‐23</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>X‐nuclei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLean, Mary A.</creatorcontrib><creatorcontrib>Hinks, R. Scott</creatorcontrib><creatorcontrib>Kaggie, Joshua D.</creatorcontrib><creatorcontrib>Woitek, Ramona</creatorcontrib><creatorcontrib>Riemer, Frank</creatorcontrib><creatorcontrib>Graves, Martin J.</creatorcontrib><creatorcontrib>McIntyre, Dominick J. O.</creatorcontrib><creatorcontrib>Gallagher, Ferdia A.</creatorcontrib><creatorcontrib>Schulte, Rolf F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLean, Mary A.</au><au>Hinks, R. Scott</au><au>Kaggie, Joshua D.</au><au>Woitek, Ramona</au><au>Riemer, Frank</au><au>Graves, Martin J.</au><au>McIntyre, Dominick J. O.</au><au>Gallagher, Ferdia A.</au><au>Schulte, Rolf F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-05</date><risdate>2021</risdate><volume>85</volume><issue>5</issue><spage>2370</spage><epage>2376</epage><pages>2370-2376</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose The aim of the study was to investigate whether incorrectly compensated eddy currents are the source of persistent X‐nuclear spectroscopy and imaging artifacts, as well as methods to correct this. Methods Pulse‐acquire spectra were collected for 1H and X‐nuclei (23Na or 31P) using the minimum TR permitted on a 3T clinical MRI system. Data were collected in 3 orientations (axial, sagittal, and coronal) with the spoiler gradient at the end of the TR applied along the slice direction for each. Modifications to system calibration files to tailor eddy current compensation for each X‐nucleus were developed and applied, and data were compared with and without these corrections for: slice‐selective MRS (for 23Na and 31P), 2D spiral trajectories (for 13C), and 3D cones trajectories (for 23Na). Results Line‐shape distortions characteristic of eddy currents were demonstrated for X‐nuclei, which were not seen for 1H. The severity of these correlated with the amplitude of the eddy current frequency compensation term applied by the system along the axis of the applied spoiler gradient. A proposed correction to eddy current compensation, taking account of the gyromagnetic ratio, was shown to dramatically reduce these distortions. The same correction was also shown to improve data quality of non‐Cartesian imaging (2D spiral and 3D cones trajectories). Conclusion A simple adaptation of the default compensation for eddy currents was shown to eliminate a range of artifacts detected on X‐nuclear spectroscopy and imaging.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33274790</pmid><doi>10.1002/mrm.28607</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3805-5221</orcidid><orcidid>https://orcid.org/0000-0002-1334-1264</orcidid><orcidid>https://orcid.org/0000-0003-4784-5230</orcidid><orcidid>https://orcid.org/0000-0002-3752-0179</orcidid><orcidid>https://orcid.org/0000-0002-9146-9159</orcidid><orcidid>https://orcid.org/0000-0003-4327-3052</orcidid><orcidid>https://orcid.org/0000-0001-6706-3442</orcidid><orcidid>https://orcid.org/0000-0002-0269-6545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2370-2376
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898706
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Brain
Calibration
carbon‐13
Cartesian coordinates
Compensation
Cones
Eddy currents
Gyromagnetic ratio
image artifacts
Imaging
Magnetic Resonance Imaging
magnetic resonance spectroscopy
MRI
Notes—Spectroscopic Methodology
Nuclei
Phantoms, Imaging
phosphorus‐31
sodium‐23
Spectroscopy
Spectrum analysis
X‐nuclei
title Characterization and correction of center‐frequency effects in X‐nuclear eddy current compensations on a clinical MR system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20correction%20of%20center%E2%80%90frequency%20effects%20in%20X%E2%80%90nuclear%20eddy%20current%20compensations%20on%20a%20clinical%20MR%20system&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=McLean,%20Mary%20A.&rft.date=2021-05&rft.volume=85&rft.issue=5&rft.spage=2370&rft.epage=2376&rft.pages=2370-2376&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28607&rft_dat=%3Cproquest_pubme%3E2467615727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484170921&rft_id=info:pmid/33274790&rfr_iscdi=true