Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast

Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-02, Vol.49 (3), p.1294-1312
Hauptverfasser: Gerguri, Tereza, Fu, Xiao, Kakui, Yasutaka, Khatri, Bhavin S, Barrington, Christopher, Bates, Paul A, Uhlmann, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 3
container_start_page 1294
container_title Nucleic acids research
container_volume 49
creator Gerguri, Tereza
Fu, Xiao
Kakui, Yasutaka
Khatri, Bhavin S
Barrington, Christopher
Bates, Paul A
Uhlmann, Frank
description Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.
doi_str_mv 10.1093/nar/gkaa1270
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477500730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotvCjXPlIwfSjr_WyaVStaKlUiUucLZm_dE1JHFqO8D-96TdtoLTaGZ-8-ZJj5APDM4YdOJ8xHx-9xORcQ2vyIqJNW9kt-avyQoEqIaBbI_IcSk_AJhkSr4lR0JIIRd-RfpNGibMsaSRpkD7lCbq_9Q8l7hMcHTUxRAOncWpztlTLHSINdVoqd3lNKSSBk9DygPWB27CuvuN-0LjSEMsj7d7j6W-I28C9sW_f6on5PvV52-bL83t1-ubzeVtY6WC2jhwFrTgGEAFtVUI1nMfti13kjHtNe9cEFp512kIrbBOqLVq1wJ1EEyhOCEXB91p3g7eWT_WjL2Zchww703CaP7fjHFn7tIvo9tOK-CLwMcngZzuZ1-qGWKxvu9x9Gkuhku9cItHWNBPB9TmVEr24eUNA_MQkFkCMs8BLfjpv9Ze4OdExF_rjJFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477500730</pqid></control><display><type>article</type><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</creator><creatorcontrib>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</creatorcontrib><description>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa1270</identifier><identifier>PMID: 33434270</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - analysis ; Chromatin - chemistry ; Chromosomes, Fungal ; Computational Biology ; Computer Simulation ; Diffusion ; DNA-Binding Proteins - analysis ; Mitosis - genetics ; Models, Genetic ; Models, Molecular ; Multiprotein Complexes - analysis ; Schizosaccharomyces - genetics</subject><ispartof>Nucleic acids research, 2021-02, Vol.49 (3), p.1294-1312</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</citedby><cites>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</cites><orcidid>0000-0002-3527-6619 ; 0000-0003-0621-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33434270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerguri, Tereza</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Kakui, Yasutaka</creatorcontrib><creatorcontrib>Khatri, Bhavin S</creatorcontrib><creatorcontrib>Barrington, Christopher</creatorcontrib><creatorcontrib>Bates, Paul A</creatorcontrib><creatorcontrib>Uhlmann, Frank</creatorcontrib><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</description><subject>Adenosine Triphosphatases - analysis</subject><subject>Chromatin - chemistry</subject><subject>Chromosomes, Fungal</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>DNA-Binding Proteins - analysis</subject><subject>Mitosis - genetics</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - analysis</subject><subject>Schizosaccharomyces - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EotvCjXPlIwfSjr_WyaVStaKlUiUucLZm_dE1JHFqO8D-96TdtoLTaGZ-8-ZJj5APDM4YdOJ8xHx-9xORcQ2vyIqJNW9kt-avyQoEqIaBbI_IcSk_AJhkSr4lR0JIIRd-RfpNGibMsaSRpkD7lCbq_9Q8l7hMcHTUxRAOncWpztlTLHSINdVoqd3lNKSSBk9DygPWB27CuvuN-0LjSEMsj7d7j6W-I28C9sW_f6on5PvV52-bL83t1-ubzeVtY6WC2jhwFrTgGEAFtVUI1nMfti13kjHtNe9cEFp512kIrbBOqLVq1wJ1EEyhOCEXB91p3g7eWT_WjL2Zchww703CaP7fjHFn7tIvo9tOK-CLwMcngZzuZ1-qGWKxvu9x9Gkuhku9cItHWNBPB9TmVEr24eUNA_MQkFkCMs8BLfjpv9Ze4OdExF_rjJFI</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Gerguri, Tereza</creator><creator>Fu, Xiao</creator><creator>Kakui, Yasutaka</creator><creator>Khatri, Bhavin S</creator><creator>Barrington, Christopher</creator><creator>Bates, Paul A</creator><creator>Uhlmann, Frank</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3527-6619</orcidid><orcidid>https://orcid.org/0000-0003-0621-0925</orcidid></search><sort><creationdate>20210222</creationdate><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><author>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphatases - analysis</topic><topic>Chromatin - chemistry</topic><topic>Chromosomes, Fungal</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>DNA-Binding Proteins - analysis</topic><topic>Mitosis - genetics</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - analysis</topic><topic>Schizosaccharomyces - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerguri, Tereza</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Kakui, Yasutaka</creatorcontrib><creatorcontrib>Khatri, Bhavin S</creatorcontrib><creatorcontrib>Barrington, Christopher</creatorcontrib><creatorcontrib>Bates, Paul A</creatorcontrib><creatorcontrib>Uhlmann, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerguri, Tereza</au><au>Fu, Xiao</au><au>Kakui, Yasutaka</au><au>Khatri, Bhavin S</au><au>Barrington, Christopher</au><au>Bates, Paul A</au><au>Uhlmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-02-22</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>1294</spage><epage>1312</epage><pages>1294-1312</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33434270</pmid><doi>10.1093/nar/gkaa1270</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3527-6619</orcidid><orcidid>https://orcid.org/0000-0003-0621-0925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-02, Vol.49 (3), p.1294-1312
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897502
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - analysis
Chromatin - chemistry
Chromosomes, Fungal
Computational Biology
Computer Simulation
Diffusion
DNA-Binding Proteins - analysis
Mitosis - genetics
Models, Genetic
Models, Molecular
Multiprotein Complexes - analysis
Schizosaccharomyces - genetics
title Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20loop%20extrusion%20and%20diffusion%20capture%20as%20mitotic%20chromosome%20formation%20pathways%20in%20fission%20yeast&rft.jtitle=Nucleic%20acids%20research&rft.au=Gerguri,%20Tereza&rft.date=2021-02-22&rft.volume=49&rft.issue=3&rft.spage=1294&rft.epage=1312&rft.pages=1294-1312&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa1270&rft_dat=%3Cproquest_pubme%3E2477500730%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477500730&rft_id=info:pmid/33434270&rfr_iscdi=true