Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast
Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively e...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-02, Vol.49 (3), p.1294-1312 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1312 |
---|---|
container_issue | 3 |
container_start_page | 1294 |
container_title | Nucleic acids research |
container_volume | 49 |
creator | Gerguri, Tereza Fu, Xiao Kakui, Yasutaka Khatri, Bhavin S Barrington, Christopher Bates, Paul A Uhlmann, Frank |
description | Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation. |
doi_str_mv | 10.1093/nar/gkaa1270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477500730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EotvCjXPlIwfSjr_WyaVStaKlUiUucLZm_dE1JHFqO8D-96TdtoLTaGZ-8-ZJj5APDM4YdOJ8xHx-9xORcQ2vyIqJNW9kt-avyQoEqIaBbI_IcSk_AJhkSr4lR0JIIRd-RfpNGibMsaSRpkD7lCbq_9Q8l7hMcHTUxRAOncWpztlTLHSINdVoqd3lNKSSBk9DygPWB27CuvuN-0LjSEMsj7d7j6W-I28C9sW_f6on5PvV52-bL83t1-ubzeVtY6WC2jhwFrTgGEAFtVUI1nMfti13kjHtNe9cEFp512kIrbBOqLVq1wJ1EEyhOCEXB91p3g7eWT_WjL2Zchww703CaP7fjHFn7tIvo9tOK-CLwMcngZzuZ1-qGWKxvu9x9Gkuhku9cItHWNBPB9TmVEr24eUNA_MQkFkCMs8BLfjpv9Ze4OdExF_rjJFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477500730</pqid></control><display><type>article</type><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</creator><creatorcontrib>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</creatorcontrib><description>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa1270</identifier><identifier>PMID: 33434270</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - analysis ; Chromatin - chemistry ; Chromosomes, Fungal ; Computational Biology ; Computer Simulation ; Diffusion ; DNA-Binding Proteins - analysis ; Mitosis - genetics ; Models, Genetic ; Models, Molecular ; Multiprotein Complexes - analysis ; Schizosaccharomyces - genetics</subject><ispartof>Nucleic acids research, 2021-02, Vol.49 (3), p.1294-1312</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</citedby><cites>FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</cites><orcidid>0000-0002-3527-6619 ; 0000-0003-0621-0925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897502/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897502/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33434270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerguri, Tereza</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Kakui, Yasutaka</creatorcontrib><creatorcontrib>Khatri, Bhavin S</creatorcontrib><creatorcontrib>Barrington, Christopher</creatorcontrib><creatorcontrib>Bates, Paul A</creatorcontrib><creatorcontrib>Uhlmann, Frank</creatorcontrib><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</description><subject>Adenosine Triphosphatases - analysis</subject><subject>Chromatin - chemistry</subject><subject>Chromosomes, Fungal</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>DNA-Binding Proteins - analysis</subject><subject>Mitosis - genetics</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - analysis</subject><subject>Schizosaccharomyces - genetics</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EotvCjXPlIwfSjr_WyaVStaKlUiUucLZm_dE1JHFqO8D-96TdtoLTaGZ-8-ZJj5APDM4YdOJ8xHx-9xORcQ2vyIqJNW9kt-avyQoEqIaBbI_IcSk_AJhkSr4lR0JIIRd-RfpNGibMsaSRpkD7lCbq_9Q8l7hMcHTUxRAOncWpztlTLHSINdVoqd3lNKSSBk9DygPWB27CuvuN-0LjSEMsj7d7j6W-I28C9sW_f6on5PvV52-bL83t1-ubzeVtY6WC2jhwFrTgGEAFtVUI1nMfti13kjHtNe9cEFp512kIrbBOqLVq1wJ1EEyhOCEXB91p3g7eWT_WjL2Zchww703CaP7fjHFn7tIvo9tOK-CLwMcngZzuZ1-qGWKxvu9x9Gkuhku9cItHWNBPB9TmVEr24eUNA_MQkFkCMs8BLfjpv9Ze4OdExF_rjJFI</recordid><startdate>20210222</startdate><enddate>20210222</enddate><creator>Gerguri, Tereza</creator><creator>Fu, Xiao</creator><creator>Kakui, Yasutaka</creator><creator>Khatri, Bhavin S</creator><creator>Barrington, Christopher</creator><creator>Bates, Paul A</creator><creator>Uhlmann, Frank</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3527-6619</orcidid><orcidid>https://orcid.org/0000-0003-0621-0925</orcidid></search><sort><creationdate>20210222</creationdate><title>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</title><author>Gerguri, Tereza ; Fu, Xiao ; Kakui, Yasutaka ; Khatri, Bhavin S ; Barrington, Christopher ; Bates, Paul A ; Uhlmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-d0dc0732af05f5b5a0ce2efb82d4117e729df375ed970f83cd3565863a7f315a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphatases - analysis</topic><topic>Chromatin - chemistry</topic><topic>Chromosomes, Fungal</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>DNA-Binding Proteins - analysis</topic><topic>Mitosis - genetics</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - analysis</topic><topic>Schizosaccharomyces - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerguri, Tereza</creatorcontrib><creatorcontrib>Fu, Xiao</creatorcontrib><creatorcontrib>Kakui, Yasutaka</creatorcontrib><creatorcontrib>Khatri, Bhavin S</creatorcontrib><creatorcontrib>Barrington, Christopher</creatorcontrib><creatorcontrib>Bates, Paul A</creatorcontrib><creatorcontrib>Uhlmann, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerguri, Tereza</au><au>Fu, Xiao</au><au>Kakui, Yasutaka</au><au>Khatri, Bhavin S</au><au>Barrington, Christopher</au><au>Bates, Paul A</au><au>Uhlmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-02-22</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>1294</spage><epage>1312</epage><pages>1294-1312</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33434270</pmid><doi>10.1093/nar/gkaa1270</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3527-6619</orcidid><orcidid>https://orcid.org/0000-0003-0621-0925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2021-02, Vol.49 (3), p.1294-1312 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897502 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - analysis Chromatin - chemistry Chromosomes, Fungal Computational Biology Computer Simulation Diffusion DNA-Binding Proteins - analysis Mitosis - genetics Models, Genetic Models, Molecular Multiprotein Complexes - analysis Schizosaccharomyces - genetics |
title | Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20loop%20extrusion%20and%20diffusion%20capture%20as%20mitotic%20chromosome%20formation%20pathways%20in%20fission%20yeast&rft.jtitle=Nucleic%20acids%20research&rft.au=Gerguri,%20Tereza&rft.date=2021-02-22&rft.volume=49&rft.issue=3&rft.spage=1294&rft.epage=1312&rft.pages=1294-1312&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa1270&rft_dat=%3Cproquest_pubme%3E2477500730%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477500730&rft_id=info:pmid/33434270&rfr_iscdi=true |