Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency
Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-ca...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-02, Vol.81 (4), p.859-869.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869.e8 |
---|---|
container_issue | 4 |
container_start_page | 859 |
container_title | Molecular cell |
container_volume | 81 |
creator | Caldwell, Blake A. Liu, Monica Yun Prasasya, Rexxi D. Wang, Tong DeNizio, Jamie E. Leu, N. Adrian Amoh, Nana Yaa A. Krapp, Christopher Lan, Yemin Shields, Emily J. Bonasio, Roberto Lengner, Christopher J. Kohli, Rahul M. Bartolomei, Marisa S. |
description | Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
[Display omitted]
•TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming
Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization. |
doi_str_mv | 10.1016/j.molcel.2020.11.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652030887X</els_id><sourcerecordid>2473405181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</originalsourceid><addsrcrecordid>eNp9UU2PFCEUJEbjrqv_wBiOXnoEGobui4nZ7KrJJl7mTvh4M8uEhhboje2vl82Mq148AY96Ve9VIfSWkg0ldPvhuJlSsBA2jLBWohvCxTN0SckoO063_Pn5zuRWXKBXpRwJoVwM40t00fe9YJQMlyjcLtFWn6IOYcXOl-rbG-cUoOB9ynh3s-vSD-_8T3BYdBPU-zXYtabiI2CjS8P5iEuadPUWZ5hzOmQ9TT4ecE14Dkv2c6oQ7foavdjrUODN-bxCu9ub3fWX7u7b56_Xn-46K9hYO0o4AcNIm5IwKoiRW-oocLFn_WiMkD3Tg25lcFJYoqU2MDjjSE-MFWN_hT6eaOfFTOAsxJp1UHP2k86rStqrf3-iv1eH9KDkMMom2Qjenwly-r5AqWrypVkddIS0FMW47DkRdKANyk9Qm1MpGfZPMpSox5zUUZ1yUo85KUpVy6m1vft7xKem38H82QGaTw8esirWNw_B-Qy2Kpf8_xV-AbIjqVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473405181</pqid></control><display><type>article</type><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</creator><creatorcontrib>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</creatorcontrib><description>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
[Display omitted]
•TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming
Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.11.045</identifier><identifier>PMID: 33352108</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5-carboxycytosine ; 5-formylcytosine ; 5-hydroxymethylcytosine ; 5-Methylcytosine - metabolism ; 5caC ; 5fC ; 5hmC ; Animals ; bACE-seq ; Cellular Reprogramming ; Dioxygenases ; DNA demethylation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Embryo, Mammalian - cytology ; Embryo, Mammalian - metabolism ; Enhancer Elements, Genetic ; Epigenesis, Genetic ; epigenetics ; Fibroblasts - cytology ; Fibroblasts - metabolism ; HEK293 Cells ; Humans ; induced pluripotent stem cells ; iPSCs ; Mice ; Mice, Knockout ; Mutation ; NIH 3T3 Cells ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; reprogramming ; ten-eleven translocation ; TET</subject><ispartof>Molecular cell, 2021-02, Vol.81 (4), p.859-869.e8</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</citedby><cites>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.11.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33352108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caldwell, Blake A.</creatorcontrib><creatorcontrib>Liu, Monica Yun</creatorcontrib><creatorcontrib>Prasasya, Rexxi D.</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>DeNizio, Jamie E.</creatorcontrib><creatorcontrib>Leu, N. Adrian</creatorcontrib><creatorcontrib>Amoh, Nana Yaa A.</creatorcontrib><creatorcontrib>Krapp, Christopher</creatorcontrib><creatorcontrib>Lan, Yemin</creatorcontrib><creatorcontrib>Shields, Emily J.</creatorcontrib><creatorcontrib>Bonasio, Roberto</creatorcontrib><creatorcontrib>Lengner, Christopher J.</creatorcontrib><creatorcontrib>Kohli, Rahul M.</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
[Display omitted]
•TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming
Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</description><subject>5-carboxycytosine</subject><subject>5-formylcytosine</subject><subject>5-hydroxymethylcytosine</subject><subject>5-Methylcytosine - metabolism</subject><subject>5caC</subject><subject>5fC</subject><subject>5hmC</subject><subject>Animals</subject><subject>bACE-seq</subject><subject>Cellular Reprogramming</subject><subject>Dioxygenases</subject><subject>DNA demethylation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Epigenesis, Genetic</subject><subject>epigenetics</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>induced pluripotent stem cells</subject><subject>iPSCs</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>NIH 3T3 Cells</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>reprogramming</subject><subject>ten-eleven translocation</subject><subject>TET</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2PFCEUJEbjrqv_wBiOXnoEGobui4nZ7KrJJl7mTvh4M8uEhhboje2vl82Mq148AY96Ve9VIfSWkg0ldPvhuJlSsBA2jLBWohvCxTN0SckoO063_Pn5zuRWXKBXpRwJoVwM40t00fe9YJQMlyjcLtFWn6IOYcXOl-rbG-cUoOB9ynh3s-vSD-_8T3BYdBPU-zXYtabiI2CjS8P5iEuadPUWZ5hzOmQ9TT4ecE14Dkv2c6oQ7foavdjrUODN-bxCu9ub3fWX7u7b56_Xn-46K9hYO0o4AcNIm5IwKoiRW-oocLFn_WiMkD3Tg25lcFJYoqU2MDjjSE-MFWN_hT6eaOfFTOAsxJp1UHP2k86rStqrf3-iv1eH9KDkMMom2Qjenwly-r5AqWrypVkddIS0FMW47DkRdKANyk9Qm1MpGfZPMpSox5zUUZ1yUo85KUpVy6m1vft7xKem38H82QGaTw8esirWNw_B-Qy2Kpf8_xV-AbIjqVc</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Caldwell, Blake A.</creator><creator>Liu, Monica Yun</creator><creator>Prasasya, Rexxi D.</creator><creator>Wang, Tong</creator><creator>DeNizio, Jamie E.</creator><creator>Leu, N. Adrian</creator><creator>Amoh, Nana Yaa A.</creator><creator>Krapp, Christopher</creator><creator>Lan, Yemin</creator><creator>Shields, Emily J.</creator><creator>Bonasio, Roberto</creator><creator>Lengner, Christopher J.</creator><creator>Kohli, Rahul M.</creator><creator>Bartolomei, Marisa S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210218</creationdate><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><author>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5-carboxycytosine</topic><topic>5-formylcytosine</topic><topic>5-hydroxymethylcytosine</topic><topic>5-Methylcytosine - metabolism</topic><topic>5caC</topic><topic>5fC</topic><topic>5hmC</topic><topic>Animals</topic><topic>bACE-seq</topic><topic>Cellular Reprogramming</topic><topic>Dioxygenases</topic><topic>DNA demethylation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Epigenesis, Genetic</topic><topic>epigenetics</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>induced pluripotent stem cells</topic><topic>iPSCs</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>NIH 3T3 Cells</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>reprogramming</topic><topic>ten-eleven translocation</topic><topic>TET</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldwell, Blake A.</creatorcontrib><creatorcontrib>Liu, Monica Yun</creatorcontrib><creatorcontrib>Prasasya, Rexxi D.</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>DeNizio, Jamie E.</creatorcontrib><creatorcontrib>Leu, N. Adrian</creatorcontrib><creatorcontrib>Amoh, Nana Yaa A.</creatorcontrib><creatorcontrib>Krapp, Christopher</creatorcontrib><creatorcontrib>Lan, Yemin</creatorcontrib><creatorcontrib>Shields, Emily J.</creatorcontrib><creatorcontrib>Bonasio, Roberto</creatorcontrib><creatorcontrib>Lengner, Christopher J.</creatorcontrib><creatorcontrib>Kohli, Rahul M.</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldwell, Blake A.</au><au>Liu, Monica Yun</au><au>Prasasya, Rexxi D.</au><au>Wang, Tong</au><au>DeNizio, Jamie E.</au><au>Leu, N. Adrian</au><au>Amoh, Nana Yaa A.</au><au>Krapp, Christopher</au><au>Lan, Yemin</au><au>Shields, Emily J.</au><au>Bonasio, Roberto</au><au>Lengner, Christopher J.</au><au>Kohli, Rahul M.</au><au>Bartolomei, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>81</volume><issue>4</issue><spage>859</spage><epage>869.e8</epage><pages>859-869.e8</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
[Display omitted]
•TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming
Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33352108</pmid><doi>10.1016/j.molcel.2020.11.045</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-02, Vol.81 (4), p.859-869.e8 |
issn | 1097-2765 1097-4164 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897302 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | 5-carboxycytosine 5-formylcytosine 5-hydroxymethylcytosine 5-Methylcytosine - metabolism 5caC 5fC 5hmC Animals bACE-seq Cellular Reprogramming Dioxygenases DNA demethylation DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Embryo, Mammalian - cytology Embryo, Mammalian - metabolism Enhancer Elements, Genetic Epigenesis, Genetic epigenetics Fibroblasts - cytology Fibroblasts - metabolism HEK293 Cells Humans induced pluripotent stem cells iPSCs Mice Mice, Knockout Mutation NIH 3T3 Cells Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism reprogramming ten-eleven translocation TET |
title | Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20distinct%20roles%20for%20TET-oxidized%205-methylcytosine%20bases%20in%20somatic%20reprogramming%20to%20pluripotency&rft.jtitle=Molecular%20cell&rft.au=Caldwell,%20Blake%20A.&rft.date=2021-02-18&rft.volume=81&rft.issue=4&rft.spage=859&rft.epage=869.e8&rft.pages=859-869.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.11.045&rft_dat=%3Cproquest_pubme%3E2473405181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473405181&rft_id=info:pmid/33352108&rft_els_id=S109727652030887X&rfr_iscdi=true |