Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-02, Vol.81 (4), p.859-869.e8
Hauptverfasser: Caldwell, Blake A., Liu, Monica Yun, Prasasya, Rexxi D., Wang, Tong, DeNizio, Jamie E., Leu, N. Adrian, Amoh, Nana Yaa A., Krapp, Christopher, Lan, Yemin, Shields, Emily J., Bonasio, Roberto, Lengner, Christopher J., Kohli, Rahul M., Bartolomei, Marisa S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869.e8
container_issue 4
container_start_page 859
container_title Molecular cell
container_volume 81
creator Caldwell, Blake A.
Liu, Monica Yun
Prasasya, Rexxi D.
Wang, Tong
DeNizio, Jamie E.
Leu, N. Adrian
Amoh, Nana Yaa A.
Krapp, Christopher
Lan, Yemin
Shields, Emily J.
Bonasio, Roberto
Lengner, Christopher J.
Kohli, Rahul M.
Bartolomei, Marisa S.
description Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency. [Display omitted] •TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.
doi_str_mv 10.1016/j.molcel.2020.11.045
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652030887X</els_id><sourcerecordid>2473405181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</originalsourceid><addsrcrecordid>eNp9UU2PFCEUJEbjrqv_wBiOXnoEGobui4nZ7KrJJl7mTvh4M8uEhhboje2vl82Mq148AY96Ve9VIfSWkg0ldPvhuJlSsBA2jLBWohvCxTN0SckoO063_Pn5zuRWXKBXpRwJoVwM40t00fe9YJQMlyjcLtFWn6IOYcXOl-rbG-cUoOB9ynh3s-vSD-_8T3BYdBPU-zXYtabiI2CjS8P5iEuadPUWZ5hzOmQ9TT4ecE14Dkv2c6oQ7foavdjrUODN-bxCu9ub3fWX7u7b56_Xn-46K9hYO0o4AcNIm5IwKoiRW-oocLFn_WiMkD3Tg25lcFJYoqU2MDjjSE-MFWN_hT6eaOfFTOAsxJp1UHP2k86rStqrf3-iv1eH9KDkMMom2Qjenwly-r5AqWrypVkddIS0FMW47DkRdKANyk9Qm1MpGfZPMpSox5zUUZ1yUo85KUpVy6m1vft7xKem38H82QGaTw8esirWNw_B-Qy2Kpf8_xV-AbIjqVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473405181</pqid></control><display><type>article</type><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</creator><creatorcontrib>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</creatorcontrib><description>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency. [Display omitted] •TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.11.045</identifier><identifier>PMID: 33352108</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5-carboxycytosine ; 5-formylcytosine ; 5-hydroxymethylcytosine ; 5-Methylcytosine - metabolism ; 5caC ; 5fC ; 5hmC ; Animals ; bACE-seq ; Cellular Reprogramming ; Dioxygenases ; DNA demethylation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Embryo, Mammalian - cytology ; Embryo, Mammalian - metabolism ; Enhancer Elements, Genetic ; Epigenesis, Genetic ; epigenetics ; Fibroblasts - cytology ; Fibroblasts - metabolism ; HEK293 Cells ; Humans ; induced pluripotent stem cells ; iPSCs ; Mice ; Mice, Knockout ; Mutation ; NIH 3T3 Cells ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; reprogramming ; ten-eleven translocation ; TET</subject><ispartof>Molecular cell, 2021-02, Vol.81 (4), p.859-869.e8</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</citedby><cites>FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.11.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33352108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caldwell, Blake A.</creatorcontrib><creatorcontrib>Liu, Monica Yun</creatorcontrib><creatorcontrib>Prasasya, Rexxi D.</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>DeNizio, Jamie E.</creatorcontrib><creatorcontrib>Leu, N. Adrian</creatorcontrib><creatorcontrib>Amoh, Nana Yaa A.</creatorcontrib><creatorcontrib>Krapp, Christopher</creatorcontrib><creatorcontrib>Lan, Yemin</creatorcontrib><creatorcontrib>Shields, Emily J.</creatorcontrib><creatorcontrib>Bonasio, Roberto</creatorcontrib><creatorcontrib>Lengner, Christopher J.</creatorcontrib><creatorcontrib>Kohli, Rahul M.</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency. [Display omitted] •TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</description><subject>5-carboxycytosine</subject><subject>5-formylcytosine</subject><subject>5-hydroxymethylcytosine</subject><subject>5-Methylcytosine - metabolism</subject><subject>5caC</subject><subject>5fC</subject><subject>5hmC</subject><subject>Animals</subject><subject>bACE-seq</subject><subject>Cellular Reprogramming</subject><subject>Dioxygenases</subject><subject>DNA demethylation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Epigenesis, Genetic</subject><subject>epigenetics</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>induced pluripotent stem cells</subject><subject>iPSCs</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>NIH 3T3 Cells</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>reprogramming</subject><subject>ten-eleven translocation</subject><subject>TET</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2PFCEUJEbjrqv_wBiOXnoEGobui4nZ7KrJJl7mTvh4M8uEhhboje2vl82Mq148AY96Ve9VIfSWkg0ldPvhuJlSsBA2jLBWohvCxTN0SckoO063_Pn5zuRWXKBXpRwJoVwM40t00fe9YJQMlyjcLtFWn6IOYcXOl-rbG-cUoOB9ynh3s-vSD-_8T3BYdBPU-zXYtabiI2CjS8P5iEuadPUWZ5hzOmQ9TT4ecE14Dkv2c6oQ7foavdjrUODN-bxCu9ub3fWX7u7b56_Xn-46K9hYO0o4AcNIm5IwKoiRW-oocLFn_WiMkD3Tg25lcFJYoqU2MDjjSE-MFWN_hT6eaOfFTOAsxJp1UHP2k86rStqrf3-iv1eH9KDkMMom2Qjenwly-r5AqWrypVkddIS0FMW47DkRdKANyk9Qm1MpGfZPMpSox5zUUZ1yUo85KUpVy6m1vft7xKem38H82QGaTw8esirWNw_B-Qy2Kpf8_xV-AbIjqVc</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Caldwell, Blake A.</creator><creator>Liu, Monica Yun</creator><creator>Prasasya, Rexxi D.</creator><creator>Wang, Tong</creator><creator>DeNizio, Jamie E.</creator><creator>Leu, N. Adrian</creator><creator>Amoh, Nana Yaa A.</creator><creator>Krapp, Christopher</creator><creator>Lan, Yemin</creator><creator>Shields, Emily J.</creator><creator>Bonasio, Roberto</creator><creator>Lengner, Christopher J.</creator><creator>Kohli, Rahul M.</creator><creator>Bartolomei, Marisa S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210218</creationdate><title>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</title><author>Caldwell, Blake A. ; Liu, Monica Yun ; Prasasya, Rexxi D. ; Wang, Tong ; DeNizio, Jamie E. ; Leu, N. Adrian ; Amoh, Nana Yaa A. ; Krapp, Christopher ; Lan, Yemin ; Shields, Emily J. ; Bonasio, Roberto ; Lengner, Christopher J. ; Kohli, Rahul M. ; Bartolomei, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-1040eb2033302150b761d1e45f239bb5732a8a0b7ed75c0a7abe8dbd030bc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5-carboxycytosine</topic><topic>5-formylcytosine</topic><topic>5-hydroxymethylcytosine</topic><topic>5-Methylcytosine - metabolism</topic><topic>5caC</topic><topic>5fC</topic><topic>5hmC</topic><topic>Animals</topic><topic>bACE-seq</topic><topic>Cellular Reprogramming</topic><topic>Dioxygenases</topic><topic>DNA demethylation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Epigenesis, Genetic</topic><topic>epigenetics</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>induced pluripotent stem cells</topic><topic>iPSCs</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>NIH 3T3 Cells</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>reprogramming</topic><topic>ten-eleven translocation</topic><topic>TET</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldwell, Blake A.</creatorcontrib><creatorcontrib>Liu, Monica Yun</creatorcontrib><creatorcontrib>Prasasya, Rexxi D.</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>DeNizio, Jamie E.</creatorcontrib><creatorcontrib>Leu, N. Adrian</creatorcontrib><creatorcontrib>Amoh, Nana Yaa A.</creatorcontrib><creatorcontrib>Krapp, Christopher</creatorcontrib><creatorcontrib>Lan, Yemin</creatorcontrib><creatorcontrib>Shields, Emily J.</creatorcontrib><creatorcontrib>Bonasio, Roberto</creatorcontrib><creatorcontrib>Lengner, Christopher J.</creatorcontrib><creatorcontrib>Kohli, Rahul M.</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldwell, Blake A.</au><au>Liu, Monica Yun</au><au>Prasasya, Rexxi D.</au><au>Wang, Tong</au><au>DeNizio, Jamie E.</au><au>Leu, N. Adrian</au><au>Amoh, Nana Yaa A.</au><au>Krapp, Christopher</au><au>Lan, Yemin</au><au>Shields, Emily J.</au><au>Bonasio, Roberto</au><au>Lengner, Christopher J.</au><au>Kohli, Rahul M.</au><au>Bartolomei, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>81</volume><issue>4</issue><spage>859</spage><epage>869.e8</epage><pages>859-869.e8</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency. [Display omitted] •TET mutants that stall oxidation at 5hmC uncouple active DNA demethylation pathways•TET-mediated oxidation to 5fC/5caC, but not 5hmC, promotes iPSC reprogramming efficiency•Novel base resolution-sequencing methods reveal distinctive roles for 5hmC from 5fC/5caC•5fC/5caC is the major driver of DNA demethylation during iPSC reprogramming Caldwell et al. use novel TET catalytic mutants that uncouple two distinct mechanisms of active DNA demethylation: passive loss of 5hmC and direct excision of 5fC/5caC. They identify the 5fC/5caC pathway as the major driver of DNA demethylation during iPSC reprogramming, with important roles in gene regulation and chromatin reorganization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33352108</pmid><doi>10.1016/j.molcel.2020.11.045</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-02, Vol.81 (4), p.859-869.e8
issn 1097-2765
1097-4164
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897302
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects 5-carboxycytosine
5-formylcytosine
5-hydroxymethylcytosine
5-Methylcytosine - metabolism
5caC
5fC
5hmC
Animals
bACE-seq
Cellular Reprogramming
Dioxygenases
DNA demethylation
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Embryo, Mammalian - cytology
Embryo, Mammalian - metabolism
Enhancer Elements, Genetic
Epigenesis, Genetic
epigenetics
Fibroblasts - cytology
Fibroblasts - metabolism
HEK293 Cells
Humans
induced pluripotent stem cells
iPSCs
Mice
Mice, Knockout
Mutation
NIH 3T3 Cells
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
reprogramming
ten-eleven translocation
TET
title Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20distinct%20roles%20for%20TET-oxidized%205-methylcytosine%20bases%20in%20somatic%20reprogramming%20to%20pluripotency&rft.jtitle=Molecular%20cell&rft.au=Caldwell,%20Blake%20A.&rft.date=2021-02-18&rft.volume=81&rft.issue=4&rft.spage=859&rft.epage=869.e8&rft.pages=859-869.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.11.045&rft_dat=%3Cproquest_pubme%3E2473405181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473405181&rft_id=info:pmid/33352108&rft_els_id=S109727652030887X&rfr_iscdi=true