Whole-genome doubling confers unique genetic vulnerabilities on tumour cells
Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development 1 , 2 . Cells that undergo WGD (WGD + cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of th...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-02, Vol.590 (7846), p.492-497 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 497 |
---|---|
container_issue | 7846 |
container_start_page | 492 |
container_title | Nature (London) |
container_volume | 590 |
creator | Quinton, Ryan J. DiDomizio, Amanda Vittoria, Marc A. Kotýnková, Kristýna Ticas, Carlos J. Patel, Sheena Koga, Yusuke Vakhshoorzadeh, Jasmine Hermance, Nicole Kuroda, Taruho S. Parulekar, Neha Taylor, Alison M. Manning, Amity L. Campbell, Joshua D. Ganem, Neil J. |
description | Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development
1
,
2
. Cells that undergo WGD (WGD
+
cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD
+
cells are more dependent than WGD
−
cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify
KIF18A
, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD
+
cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD
–
cells, its loss induces notable mitotic errors in WGD
+
cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD
+
cancer cells while sparing the normal, non-transformed WGD
−
cells that comprise human tissue.
Cancer cells that have undergone whole-genome doubling are more reliant than their near-diploid counterparts on DNA-replication factors, the spindle-assembly checkpoint and a mitotic kinesin protein, KIF18A. |
doi_str_mv | 10.1038/s41586-020-03133-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7889737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660665839</galeid><sourcerecordid>A660665839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c689t-b669327401637152f7a16b2538125c9dcf96d6e70a8b643dcf209ab58302f0f93</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxYModq1-AR9k0CcfUm-SmSTzIpSitbAg-AcfQyaTTFNmkm0yU_Tbm-3WtguL5CEk95eTew8HodcETggw-SHXpJEcAwUMjDCG2RO0IrXguOZSPEUrACoxSMaP0IucrwCgIaJ-jo4Ya6ABKlZo_esyjhYPNsTJVn1cutGHoTIxOJtytQR_vdiqlO3sTXWzjMEm3fnRz97mKoZqXqa4pMrYccwv0TOnx2xf3e3H6OfnTz_OvuD11_OLs9M1Nly2M-44bxkVNRDOBGmoE5rwjjZMEtqYtjeu5T23ArTseM3KmUKru0YyoA5cy47Rx53uZukm2xsb5qRHtUl-0umPitqr_Urwl2qIN0pI2QomisC7O4EUy3x5VldliFB6VrRuaS0oa9kDNejRKh9cLGJm8tmoU86B89LRthl8gNo6Vn6OwTpfrvf4twd4s_HX6jF0cgAqq7eTNwdV3-89KMxsf8-DXnJWF9-_7bN0x5oUc07W3TtHQG2TpXbJUiVZ6jZZamvGm8ee3z_5F6UCsB2QSykMNj14-h_Zv4Gh1gM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492472393</pqid></control><display><type>article</type><title>Whole-genome doubling confers unique genetic vulnerabilities on tumour cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Quinton, Ryan J. ; DiDomizio, Amanda ; Vittoria, Marc A. ; Kotýnková, Kristýna ; Ticas, Carlos J. ; Patel, Sheena ; Koga, Yusuke ; Vakhshoorzadeh, Jasmine ; Hermance, Nicole ; Kuroda, Taruho S. ; Parulekar, Neha ; Taylor, Alison M. ; Manning, Amity L. ; Campbell, Joshua D. ; Ganem, Neil J.</creator><creatorcontrib>Quinton, Ryan J. ; DiDomizio, Amanda ; Vittoria, Marc A. ; Kotýnková, Kristýna ; Ticas, Carlos J. ; Patel, Sheena ; Koga, Yusuke ; Vakhshoorzadeh, Jasmine ; Hermance, Nicole ; Kuroda, Taruho S. ; Parulekar, Neha ; Taylor, Alison M. ; Manning, Amity L. ; Campbell, Joshua D. ; Ganem, Neil J.</creatorcontrib><description>Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development
1
,
2
. Cells that undergo WGD (WGD
+
cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD
+
cells are more dependent than WGD
−
cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify
KIF18A
, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD
+
cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD
–
cells, its loss induces notable mitotic errors in WGD
+
cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD
+
cancer cells while sparing the normal, non-transformed WGD
−
cells that comprise human tissue.
Cancer cells that have undergone whole-genome doubling are more reliant than their near-diploid counterparts on DNA-replication factors, the spindle-assembly checkpoint and a mitotic kinesin protein, KIF18A.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03133-3</identifier><identifier>PMID: 33505027</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/106 ; 13/109 ; 13/44 ; 13/89 ; 14 ; 14/19 ; 14/63 ; 38 ; 631/67/68 ; 631/80/641/1655 ; Abnormal Karyotype - drug effects ; Adaptation ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer ; Cancer cells ; Cell division ; Cell Line, Tumor ; Cell viability ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; Female ; Gene expression ; Genes, Lethal - genetics ; Genetic aspects ; Genome, Human - genetics ; Genomes ; Human tissues ; Humanities and Social Sciences ; Humans ; Kinases ; Kinesin ; Kinesin - deficiency ; Kinesin - genetics ; Kinesin - metabolism ; M Phase Cell Cycle Checkpoints - drug effects ; Male ; Mitosis ; Mitosis - drug effects ; Mitosis - genetics ; multidisciplinary ; Mutation ; Neoplasms - genetics ; Neoplasms - pathology ; Proteasome Endopeptidase Complex - metabolism ; Proteasomes ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Spindle Apparatus - drug effects ; Tetraploidy ; Tumor cell lines ; Tumorigenesis ; Tumors</subject><ispartof>Nature (London), 2021-02, Vol.590 (7846), p.492-497</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 18, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c689t-b669327401637152f7a16b2538125c9dcf96d6e70a8b643dcf209ab58302f0f93</citedby><cites>FETCH-LOGICAL-c689t-b669327401637152f7a16b2538125c9dcf96d6e70a8b643dcf209ab58302f0f93</cites><orcidid>0000-0003-0269-6585 ; 0000-0003-0780-8662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03133-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03133-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33505027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quinton, Ryan J.</creatorcontrib><creatorcontrib>DiDomizio, Amanda</creatorcontrib><creatorcontrib>Vittoria, Marc A.</creatorcontrib><creatorcontrib>Kotýnková, Kristýna</creatorcontrib><creatorcontrib>Ticas, Carlos J.</creatorcontrib><creatorcontrib>Patel, Sheena</creatorcontrib><creatorcontrib>Koga, Yusuke</creatorcontrib><creatorcontrib>Vakhshoorzadeh, Jasmine</creatorcontrib><creatorcontrib>Hermance, Nicole</creatorcontrib><creatorcontrib>Kuroda, Taruho S.</creatorcontrib><creatorcontrib>Parulekar, Neha</creatorcontrib><creatorcontrib>Taylor, Alison M.</creatorcontrib><creatorcontrib>Manning, Amity L.</creatorcontrib><creatorcontrib>Campbell, Joshua D.</creatorcontrib><creatorcontrib>Ganem, Neil J.</creatorcontrib><title>Whole-genome doubling confers unique genetic vulnerabilities on tumour cells</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development
1
,
2
. Cells that undergo WGD (WGD
+
cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD
+
cells are more dependent than WGD
−
cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify
KIF18A
, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD
+
cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD
–
cells, its loss induces notable mitotic errors in WGD
+
cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD
+
cancer cells while sparing the normal, non-transformed WGD
−
cells that comprise human tissue.
Cancer cells that have undergone whole-genome doubling are more reliant than their near-diploid counterparts on DNA-replication factors, the spindle-assembly checkpoint and a mitotic kinesin protein, KIF18A.</description><subject>13</subject><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/44</subject><subject>13/89</subject><subject>14</subject><subject>14/19</subject><subject>14/63</subject><subject>38</subject><subject>631/67/68</subject><subject>631/80/641/1655</subject><subject>Abnormal Karyotype - drug effects</subject><subject>Adaptation</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cell division</subject><subject>Cell Line, Tumor</subject><subject>Cell viability</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genes, Lethal - genetics</subject><subject>Genetic aspects</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Human tissues</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Kinesin</subject><subject>Kinesin - deficiency</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>M Phase Cell Cycle Checkpoints - drug effects</subject><subject>Male</subject><subject>Mitosis</subject><subject>Mitosis - drug effects</subject><subject>Mitosis - genetics</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasomes</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spindle Apparatus - drug effects</subject><subject>Tetraploidy</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kl9rFDEUxYModq1-AR9k0CcfUm-SmSTzIpSitbAg-AcfQyaTTFNmkm0yU_Tbm-3WtguL5CEk95eTew8HodcETggw-SHXpJEcAwUMjDCG2RO0IrXguOZSPEUrACoxSMaP0IucrwCgIaJ-jo4Ya6ABKlZo_esyjhYPNsTJVn1cutGHoTIxOJtytQR_vdiqlO3sTXWzjMEm3fnRz97mKoZqXqa4pMrYccwv0TOnx2xf3e3H6OfnTz_OvuD11_OLs9M1Nly2M-44bxkVNRDOBGmoE5rwjjZMEtqYtjeu5T23ArTseM3KmUKru0YyoA5cy47Rx53uZukm2xsb5qRHtUl-0umPitqr_Urwl2qIN0pI2QomisC7O4EUy3x5VldliFB6VrRuaS0oa9kDNejRKh9cLGJm8tmoU86B89LRthl8gNo6Vn6OwTpfrvf4twd4s_HX6jF0cgAqq7eTNwdV3-89KMxsf8-DXnJWF9-_7bN0x5oUc07W3TtHQG2TpXbJUiVZ6jZZamvGm8ee3z_5F6UCsB2QSykMNj14-h_Zv4Gh1gM</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Quinton, Ryan J.</creator><creator>DiDomizio, Amanda</creator><creator>Vittoria, Marc A.</creator><creator>Kotýnková, Kristýna</creator><creator>Ticas, Carlos J.</creator><creator>Patel, Sheena</creator><creator>Koga, Yusuke</creator><creator>Vakhshoorzadeh, Jasmine</creator><creator>Hermance, Nicole</creator><creator>Kuroda, Taruho S.</creator><creator>Parulekar, Neha</creator><creator>Taylor, Alison M.</creator><creator>Manning, Amity L.</creator><creator>Campbell, Joshua D.</creator><creator>Ganem, Neil J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0269-6585</orcidid><orcidid>https://orcid.org/0000-0003-0780-8662</orcidid></search><sort><creationdate>20210218</creationdate><title>Whole-genome doubling confers unique genetic vulnerabilities on tumour cells</title><author>Quinton, Ryan J. ; DiDomizio, Amanda ; Vittoria, Marc A. ; Kotýnková, Kristýna ; Ticas, Carlos J. ; Patel, Sheena ; Koga, Yusuke ; Vakhshoorzadeh, Jasmine ; Hermance, Nicole ; Kuroda, Taruho S. ; Parulekar, Neha ; Taylor, Alison M. ; Manning, Amity L. ; Campbell, Joshua D. ; Ganem, Neil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c689t-b669327401637152f7a16b2538125c9dcf96d6e70a8b643dcf209ab58302f0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/44</topic><topic>13/89</topic><topic>14</topic><topic>14/19</topic><topic>14/63</topic><topic>38</topic><topic>631/67/68</topic><topic>631/80/641/1655</topic><topic>Abnormal Karyotype - drug effects</topic><topic>Adaptation</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cell division</topic><topic>Cell Line, Tumor</topic><topic>Cell viability</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genes, Lethal - genetics</topic><topic>Genetic aspects</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Human tissues</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Kinesin</topic><topic>Kinesin - deficiency</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>M Phase Cell Cycle Checkpoints - drug effects</topic><topic>Male</topic><topic>Mitosis</topic><topic>Mitosis - drug effects</topic><topic>Mitosis - genetics</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasomes</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spindle Apparatus - drug effects</topic><topic>Tetraploidy</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinton, Ryan J.</creatorcontrib><creatorcontrib>DiDomizio, Amanda</creatorcontrib><creatorcontrib>Vittoria, Marc A.</creatorcontrib><creatorcontrib>Kotýnková, Kristýna</creatorcontrib><creatorcontrib>Ticas, Carlos J.</creatorcontrib><creatorcontrib>Patel, Sheena</creatorcontrib><creatorcontrib>Koga, Yusuke</creatorcontrib><creatorcontrib>Vakhshoorzadeh, Jasmine</creatorcontrib><creatorcontrib>Hermance, Nicole</creatorcontrib><creatorcontrib>Kuroda, Taruho S.</creatorcontrib><creatorcontrib>Parulekar, Neha</creatorcontrib><creatorcontrib>Taylor, Alison M.</creatorcontrib><creatorcontrib>Manning, Amity L.</creatorcontrib><creatorcontrib>Campbell, Joshua D.</creatorcontrib><creatorcontrib>Ganem, Neil J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinton, Ryan J.</au><au>DiDomizio, Amanda</au><au>Vittoria, Marc A.</au><au>Kotýnková, Kristýna</au><au>Ticas, Carlos J.</au><au>Patel, Sheena</au><au>Koga, Yusuke</au><au>Vakhshoorzadeh, Jasmine</au><au>Hermance, Nicole</au><au>Kuroda, Taruho S.</au><au>Parulekar, Neha</au><au>Taylor, Alison M.</au><au>Manning, Amity L.</au><au>Campbell, Joshua D.</au><au>Ganem, Neil J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-genome doubling confers unique genetic vulnerabilities on tumour cells</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>590</volume><issue>7846</issue><spage>492</spage><epage>497</epage><pages>492-497</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development
1
,
2
. Cells that undergo WGD (WGD
+
cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD
+
cells are more dependent than WGD
−
cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify
KIF18A
, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD
+
cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD
–
cells, its loss induces notable mitotic errors in WGD
+
cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD
+
cancer cells while sparing the normal, non-transformed WGD
−
cells that comprise human tissue.
Cancer cells that have undergone whole-genome doubling are more reliant than their near-diploid counterparts on DNA-replication factors, the spindle-assembly checkpoint and a mitotic kinesin protein, KIF18A.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33505027</pmid><doi>10.1038/s41586-020-03133-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0269-6585</orcidid><orcidid>https://orcid.org/0000-0003-0780-8662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-02, Vol.590 (7846), p.492-497 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7889737 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13 13/1 13/106 13/109 13/44 13/89 14 14/19 14/63 38 631/67/68 631/80/641/1655 Abnormal Karyotype - drug effects Adaptation Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer Cancer cells Cell division Cell Line, Tumor Cell viability Chromosomes Deoxyribonucleic acid DNA DNA biosynthesis Female Gene expression Genes, Lethal - genetics Genetic aspects Genome, Human - genetics Genomes Human tissues Humanities and Social Sciences Humans Kinases Kinesin Kinesin - deficiency Kinesin - genetics Kinesin - metabolism M Phase Cell Cycle Checkpoints - drug effects Male Mitosis Mitosis - drug effects Mitosis - genetics multidisciplinary Mutation Neoplasms - genetics Neoplasms - pathology Proteasome Endopeptidase Complex - metabolism Proteasomes Reproducibility of Results Science Science (multidisciplinary) Spindle Apparatus - drug effects Tetraploidy Tumor cell lines Tumorigenesis Tumors |
title | Whole-genome doubling confers unique genetic vulnerabilities on tumour cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-genome%20doubling%20confers%20unique%20genetic%20vulnerabilities%20on%20tumour%20cells&rft.jtitle=Nature%20(London)&rft.au=Quinton,%20Ryan%20J.&rft.date=2021-02-18&rft.volume=590&rft.issue=7846&rft.spage=492&rft.epage=497&rft.pages=492-497&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03133-3&rft_dat=%3Cgale_pubme%3EA660665839%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492472393&rft_id=info:pmid/33505027&rft_galeid=A660665839&rfr_iscdi=true |