Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium
The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2021-02, Vol.54 (2), p.276-290.e5 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290.e5 |
---|---|
container_issue | 2 |
container_start_page | 276 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 54 |
creator | Shannon, John P. Vrba, Sophia M. Reynoso, Glennys V. Wynne-Jones, Erica Kamenyeva, Olena Malo, Courtney S. Cherry, Christian R. McManus, Daniel T. Hickman, Heather D. |
description | The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
[Display omitted]
•Oral mucosa ILC1s restrict viral replication in the epithelium•ILC1s patrol the basal layers of the oral epithelium at steady state•ILC1s produce tonic IFN-γ, upregulating antiviral genes in the epithelium•ILC1s prime uninfected tissue to restrict viral replication
ILC1s provide antiviral protection at initial sites of viral encounter, but how these cells accomplish this spatially in the tissue remains unexplored. Shannon et al. show that ILC1s patrol the uninfected epithelium of the oral mucosa and provide protection even before infection through the production of IFN-γ. |
doi_str_mv | 10.1016/j.immuni.2020.12.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107476132030532X</els_id><sourcerecordid>2487973951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e7b3053a0acaeff2853143a1ea79079c23b4ad6c46666dd9867fe024f55dc2513</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBCIfcAfIBSJC5cMfiVOLkhoBbtIK3GBs-WxOzs9xHawk0j7XfsffBMeZlkeByxZdruq29VdhLxgdMMoa9_sN-j9EnDDKS9PfEOpfEROGe1VLVlHHx_uStaqZeKEnOW8p5TJpqdPyYkQUkjZy1Py9TLFZapYhSGYGarx1k-7iK62MI61g4QruALOkAZIMdTf7ypvSlx2rkyYsV4xmbFa8QZHEywUcjXvoPKLjbkAMGEJR1z8M_JkMGOG5_fnOfny4f3ni6v6-tPlx4t317WVPZtrUFtBG2GosQaGgXeNYFIYBkb1VPWWi600rrWyLcu5vmvVAJTLoWmc5Q0T5-Ttse60bD04C2EuCvWU0Jt0q6NB_TcScKdv4qpV17GG81Lg9X2BFL8tkGftMR8GYgLEJWsulWoo6zgt1Ff_UPdxSaG0V1id6pXofyqSR5ZNMecEw4MYRvXBTb3XRzf1wU3NuC5ulrSXfzbykPTLvt-dQhnnipB0tgjFBIcJ7KxdxP__8AMACbVm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487973951</pqid></control><display><type>article</type><title>Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shannon, John P. ; Vrba, Sophia M. ; Reynoso, Glennys V. ; Wynne-Jones, Erica ; Kamenyeva, Olena ; Malo, Courtney S. ; Cherry, Christian R. ; McManus, Daniel T. ; Hickman, Heather D.</creator><creatorcontrib>Shannon, John P. ; Vrba, Sophia M. ; Reynoso, Glennys V. ; Wynne-Jones, Erica ; Kamenyeva, Olena ; Malo, Courtney S. ; Cherry, Christian R. ; McManus, Daniel T. ; Hickman, Heather D.</creatorcontrib><description>The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
[Display omitted]
•Oral mucosa ILC1s restrict viral replication in the epithelium•ILC1s patrol the basal layers of the oral epithelium at steady state•ILC1s produce tonic IFN-γ, upregulating antiviral genes in the epithelium•ILC1s prime uninfected tissue to restrict viral replication
ILC1s provide antiviral protection at initial sites of viral encounter, but how these cells accomplish this spatially in the tissue remains unexplored. Shannon et al. show that ILC1s patrol the uninfected epithelium of the oral mucosa and provide protection even before infection through the production of IFN-γ.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2020.12.004</identifier><identifier>PMID: 33434494</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ablation ; Animals ; Antibodies ; Antigens ; Antiviral agents ; Antiviral state ; Cells, Cultured ; Disease Resistance ; Epithelium ; Homeostasis ; Humans ; Immunity, Innate ; Infections ; innate immunity ; innate lymphoid cell ; Interferon ; Interferon-gamma - genetics ; Interferon-gamma - metabolism ; intravital microscopy ; Lymphocytes ; Lymphocytes - immunology ; Lymphoid cells ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mucosa ; Neutralization ; NK cell ; Oropharynx - immunology ; poxvirus ; Redundancy ; Respiratory Mucosa - immunology ; Rodents ; Smallpox ; T-Box Domain Proteins - genetics ; Th1 Cells - immunology ; Tissues ; Vaccinia - immunology ; Vaccinia virus - physiology ; Vigilance ; viral immunity ; Viral infections ; γ-Interferon</subject><ispartof>Immunity (Cambridge, Mass.), 2021-02, Vol.54 (2), p.276-290.e5</ispartof><rights>2020</rights><rights>Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Feb 9, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e7b3053a0acaeff2853143a1ea79079c23b4ad6c46666dd9867fe024f55dc2513</citedby><cites>FETCH-LOGICAL-c491t-e7b3053a0acaeff2853143a1ea79079c23b4ad6c46666dd9867fe024f55dc2513</cites><orcidid>0000-0002-8722-2209 ; 0000-0003-2661-6981 ; 0000-0001-6796-2202 ; 0000-0003-1679-8240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S107476132030532X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33434494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shannon, John P.</creatorcontrib><creatorcontrib>Vrba, Sophia M.</creatorcontrib><creatorcontrib>Reynoso, Glennys V.</creatorcontrib><creatorcontrib>Wynne-Jones, Erica</creatorcontrib><creatorcontrib>Kamenyeva, Olena</creatorcontrib><creatorcontrib>Malo, Courtney S.</creatorcontrib><creatorcontrib>Cherry, Christian R.</creatorcontrib><creatorcontrib>McManus, Daniel T.</creatorcontrib><creatorcontrib>Hickman, Heather D.</creatorcontrib><title>Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
[Display omitted]
•Oral mucosa ILC1s restrict viral replication in the epithelium•ILC1s patrol the basal layers of the oral epithelium at steady state•ILC1s produce tonic IFN-γ, upregulating antiviral genes in the epithelium•ILC1s prime uninfected tissue to restrict viral replication
ILC1s provide antiviral protection at initial sites of viral encounter, but how these cells accomplish this spatially in the tissue remains unexplored. Shannon et al. show that ILC1s patrol the uninfected epithelium of the oral mucosa and provide protection even before infection through the production of IFN-γ.</description><subject>Ablation</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Antiviral agents</subject><subject>Antiviral state</subject><subject>Cells, Cultured</subject><subject>Disease Resistance</subject><subject>Epithelium</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Infections</subject><subject>innate immunity</subject><subject>innate lymphoid cell</subject><subject>Interferon</subject><subject>Interferon-gamma - genetics</subject><subject>Interferon-gamma - metabolism</subject><subject>intravital microscopy</subject><subject>Lymphocytes</subject><subject>Lymphocytes - immunology</subject><subject>Lymphoid cells</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mucosa</subject><subject>Neutralization</subject><subject>NK cell</subject><subject>Oropharynx - immunology</subject><subject>poxvirus</subject><subject>Redundancy</subject><subject>Respiratory Mucosa - immunology</subject><subject>Rodents</subject><subject>Smallpox</subject><subject>T-Box Domain Proteins - genetics</subject><subject>Th1 Cells - immunology</subject><subject>Tissues</subject><subject>Vaccinia - immunology</subject><subject>Vaccinia virus - physiology</subject><subject>Vigilance</subject><subject>viral immunity</subject><subject>Viral infections</subject><subject>γ-Interferon</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuO1DAQtBCIfcAfIBSJC5cMfiVOLkhoBbtIK3GBs-WxOzs9xHawk0j7XfsffBMeZlkeByxZdruq29VdhLxgdMMoa9_sN-j9EnDDKS9PfEOpfEROGe1VLVlHHx_uStaqZeKEnOW8p5TJpqdPyYkQUkjZy1Py9TLFZapYhSGYGarx1k-7iK62MI61g4QruALOkAZIMdTf7ypvSlx2rkyYsV4xmbFa8QZHEywUcjXvoPKLjbkAMGEJR1z8M_JkMGOG5_fnOfny4f3ni6v6-tPlx4t317WVPZtrUFtBG2GosQaGgXeNYFIYBkb1VPWWi600rrWyLcu5vmvVAJTLoWmc5Q0T5-Ttse60bD04C2EuCvWU0Jt0q6NB_TcScKdv4qpV17GG81Lg9X2BFL8tkGftMR8GYgLEJWsulWoo6zgt1Ff_UPdxSaG0V1id6pXofyqSR5ZNMecEw4MYRvXBTb3XRzf1wU3NuC5ulrSXfzbykPTLvt-dQhnnipB0tgjFBIcJ7KxdxP__8AMACbVm</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Shannon, John P.</creator><creator>Vrba, Sophia M.</creator><creator>Reynoso, Glennys V.</creator><creator>Wynne-Jones, Erica</creator><creator>Kamenyeva, Olena</creator><creator>Malo, Courtney S.</creator><creator>Cherry, Christian R.</creator><creator>McManus, Daniel T.</creator><creator>Hickman, Heather D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8722-2209</orcidid><orcidid>https://orcid.org/0000-0003-2661-6981</orcidid><orcidid>https://orcid.org/0000-0001-6796-2202</orcidid><orcidid>https://orcid.org/0000-0003-1679-8240</orcidid></search><sort><creationdate>20210209</creationdate><title>Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium</title><author>Shannon, John P. ; Vrba, Sophia M. ; Reynoso, Glennys V. ; Wynne-Jones, Erica ; Kamenyeva, Olena ; Malo, Courtney S. ; Cherry, Christian R. ; McManus, Daniel T. ; Hickman, Heather D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e7b3053a0acaeff2853143a1ea79079c23b4ad6c46666dd9867fe024f55dc2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Antiviral agents</topic><topic>Antiviral state</topic><topic>Cells, Cultured</topic><topic>Disease Resistance</topic><topic>Epithelium</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Infections</topic><topic>innate immunity</topic><topic>innate lymphoid cell</topic><topic>Interferon</topic><topic>Interferon-gamma - genetics</topic><topic>Interferon-gamma - metabolism</topic><topic>intravital microscopy</topic><topic>Lymphocytes</topic><topic>Lymphocytes - immunology</topic><topic>Lymphoid cells</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mucosa</topic><topic>Neutralization</topic><topic>NK cell</topic><topic>Oropharynx - immunology</topic><topic>poxvirus</topic><topic>Redundancy</topic><topic>Respiratory Mucosa - immunology</topic><topic>Rodents</topic><topic>Smallpox</topic><topic>T-Box Domain Proteins - genetics</topic><topic>Th1 Cells - immunology</topic><topic>Tissues</topic><topic>Vaccinia - immunology</topic><topic>Vaccinia virus - physiology</topic><topic>Vigilance</topic><topic>viral immunity</topic><topic>Viral infections</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shannon, John P.</creatorcontrib><creatorcontrib>Vrba, Sophia M.</creatorcontrib><creatorcontrib>Reynoso, Glennys V.</creatorcontrib><creatorcontrib>Wynne-Jones, Erica</creatorcontrib><creatorcontrib>Kamenyeva, Olena</creatorcontrib><creatorcontrib>Malo, Courtney S.</creatorcontrib><creatorcontrib>Cherry, Christian R.</creatorcontrib><creatorcontrib>McManus, Daniel T.</creatorcontrib><creatorcontrib>Hickman, Heather D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shannon, John P.</au><au>Vrba, Sophia M.</au><au>Reynoso, Glennys V.</au><au>Wynne-Jones, Erica</au><au>Kamenyeva, Olena</au><au>Malo, Courtney S.</au><au>Cherry, Christian R.</au><au>McManus, Daniel T.</au><au>Hickman, Heather D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2021-02-09</date><risdate>2021</risdate><volume>54</volume><issue>2</issue><spage>276</spage><epage>290.e5</epage><pages>276-290.e5</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.
[Display omitted]
•Oral mucosa ILC1s restrict viral replication in the epithelium•ILC1s patrol the basal layers of the oral epithelium at steady state•ILC1s produce tonic IFN-γ, upregulating antiviral genes in the epithelium•ILC1s prime uninfected tissue to restrict viral replication
ILC1s provide antiviral protection at initial sites of viral encounter, but how these cells accomplish this spatially in the tissue remains unexplored. Shannon et al. show that ILC1s patrol the uninfected epithelium of the oral mucosa and provide protection even before infection through the production of IFN-γ.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33434494</pmid><doi>10.1016/j.immuni.2020.12.004</doi><orcidid>https://orcid.org/0000-0002-8722-2209</orcidid><orcidid>https://orcid.org/0000-0003-2661-6981</orcidid><orcidid>https://orcid.org/0000-0001-6796-2202</orcidid><orcidid>https://orcid.org/0000-0003-1679-8240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2021-02, Vol.54 (2), p.276-290.e5 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881522 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Ablation Animals Antibodies Antigens Antiviral agents Antiviral state Cells, Cultured Disease Resistance Epithelium Homeostasis Humans Immunity, Innate Infections innate immunity innate lymphoid cell Interferon Interferon-gamma - genetics Interferon-gamma - metabolism intravital microscopy Lymphocytes Lymphocytes - immunology Lymphoid cells Mice Mice, Inbred C57BL Mice, Knockout Mucosa Neutralization NK cell Oropharynx - immunology poxvirus Redundancy Respiratory Mucosa - immunology Rodents Smallpox T-Box Domain Proteins - genetics Th1 Cells - immunology Tissues Vaccinia - immunology Vaccinia virus - physiology Vigilance viral immunity Viral infections γ-Interferon |
title | Group 1 innate lymphoid-cell-derived interferon-γ maintains anti-viral vigilance in the mucosal epithelium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%201%20innate%20lymphoid-cell-derived%20interferon-%CE%B3%20maintains%20anti-viral%20vigilance%20in%20the%20mucosal%20epithelium&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Shannon,%20John%20P.&rft.date=2021-02-09&rft.volume=54&rft.issue=2&rft.spage=276&rft.epage=290.e5&rft.pages=276-290.e5&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2020.12.004&rft_dat=%3Cproquest_pubme%3E2487973951%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487973951&rft_id=info:pmid/33434494&rft_els_id=S107476132030532X&rfr_iscdi=true |