Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling
Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of divers...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2021-01, Vol.18 (174), p.20200624-20200624 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20200624 |
---|---|
container_issue | 174 |
container_start_page | 20200624 |
container_title | Journal of the Royal Society interface |
container_volume | 18 |
creator | Brummer, Alexander B Lymperopoulos, Panagiotis Shen, Jocelyn Tekin, Elif Bentley, Lisa P Buzzard, Vanessa Gray, Andrew Oliveras, Imma Enquist, Brian J Savage, Van M |
description | Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks-mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii-which dictate essential biologic functions related to resource transport and supply-are best at distinguishing branching networks. We also show how variation in vascular and branching geometry persists despite observing a convergent relationship across organisms for how metabolic rate depends on body mass. |
doi_str_mv | 10.1098/rsif.2020.0624 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475530862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d619ed386eaa754ebb6b7299aa22ff2e988c430beda2361767ea38fad92fa9083</originalsourceid><addsrcrecordid>eNpVkc1P3DAQxS1UBJT2yrHysQd269iJPy5ILaIfEhIXerYm8RhME3uxsxT-e5xCV-1pZuT3nmf0I-SkYeuGGf0pl-DXnHG2ZpK3e-SoUS1fdVLyN7tem0PytpQ7xoQSXXdADoVoq4WLI_L4JUMcbkO8oZsc4hA2IxaaPIUYJhhrcXQzQpxpxPl3yr8KDQ7jHHxAR_snOqSpD3Hx4-OMsYQHpA5mOKUTLLlIR4T8R7BkTcnhONbpHdn3MBZ8_1qPyc-vF9fn31eXV99-nH--XA1CtvPKycagE1oigOpa7HvZK24MAOfeczRaD61gPTrgQjZKKgShPTjDPRimxTE5e8ndbPsJ3VB3zzDaeuwE-ckmCPb_lxhu7U16sEoro7qmBnx8DcjpfotltlMoQz0CIqZtsbxVXSeYlrxK1y_SIadSMvrdNw2zCy674LILLrvgqoYP_y63k__lI54B6pGVUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475530862</pqid></control><display><type>article</type><title>Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling</title><source>PubMed Central</source><creator>Brummer, Alexander B ; Lymperopoulos, Panagiotis ; Shen, Jocelyn ; Tekin, Elif ; Bentley, Lisa P ; Buzzard, Vanessa ; Gray, Andrew ; Oliveras, Imma ; Enquist, Brian J ; Savage, Van M</creator><creatorcontrib>Brummer, Alexander B ; Lymperopoulos, Panagiotis ; Shen, Jocelyn ; Tekin, Elif ; Bentley, Lisa P ; Buzzard, Vanessa ; Gray, Andrew ; Oliveras, Imma ; Enquist, Brian J ; Savage, Van M</creatorcontrib><description>Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks-mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii-which dictate essential biologic functions related to resource transport and supply-are best at distinguishing branching networks. We also show how variation in vascular and branching geometry persists despite observing a convergent relationship across organisms for how metabolic rate depends on body mass.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2020.0624</identifier><identifier>PMID: 33402023</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Life Sciences–Physics interface</subject><ispartof>Journal of the Royal Society interface, 2021-01, Vol.18 (174), p.20200624-20200624</ispartof><rights>2021 The Authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d619ed386eaa754ebb6b7299aa22ff2e988c430beda2361767ea38fad92fa9083</citedby><cites>FETCH-LOGICAL-c364t-d619ed386eaa754ebb6b7299aa22ff2e988c430beda2361767ea38fad92fa9083</cites><orcidid>0000-0001-5345-2236 ; 0000-0002-8776-0939 ; 0000-0001-5432-5511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879751/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879751/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33402023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brummer, Alexander B</creatorcontrib><creatorcontrib>Lymperopoulos, Panagiotis</creatorcontrib><creatorcontrib>Shen, Jocelyn</creatorcontrib><creatorcontrib>Tekin, Elif</creatorcontrib><creatorcontrib>Bentley, Lisa P</creatorcontrib><creatorcontrib>Buzzard, Vanessa</creatorcontrib><creatorcontrib>Gray, Andrew</creatorcontrib><creatorcontrib>Oliveras, Imma</creatorcontrib><creatorcontrib>Enquist, Brian J</creatorcontrib><creatorcontrib>Savage, Van M</creatorcontrib><title>Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks-mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii-which dictate essential biologic functions related to resource transport and supply-are best at distinguishing branching networks. We also show how variation in vascular and branching geometry persists despite observing a convergent relationship across organisms for how metabolic rate depends on body mass.</description><subject>Life Sciences–Physics interface</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkc1P3DAQxS1UBJT2yrHysQd269iJPy5ILaIfEhIXerYm8RhME3uxsxT-e5xCV-1pZuT3nmf0I-SkYeuGGf0pl-DXnHG2ZpK3e-SoUS1fdVLyN7tem0PytpQ7xoQSXXdADoVoq4WLI_L4JUMcbkO8oZsc4hA2IxaaPIUYJhhrcXQzQpxpxPl3yr8KDQ7jHHxAR_snOqSpD3Hx4-OMsYQHpA5mOKUTLLlIR4T8R7BkTcnhONbpHdn3MBZ8_1qPyc-vF9fn31eXV99-nH--XA1CtvPKycagE1oigOpa7HvZK24MAOfeczRaD61gPTrgQjZKKgShPTjDPRimxTE5e8ndbPsJ3VB3zzDaeuwE-ckmCPb_lxhu7U16sEoro7qmBnx8DcjpfotltlMoQz0CIqZtsbxVXSeYlrxK1y_SIadSMvrdNw2zCy674LILLrvgqoYP_y63k__lI54B6pGVUg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Brummer, Alexander B</creator><creator>Lymperopoulos, Panagiotis</creator><creator>Shen, Jocelyn</creator><creator>Tekin, Elif</creator><creator>Bentley, Lisa P</creator><creator>Buzzard, Vanessa</creator><creator>Gray, Andrew</creator><creator>Oliveras, Imma</creator><creator>Enquist, Brian J</creator><creator>Savage, Van M</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5345-2236</orcidid><orcidid>https://orcid.org/0000-0002-8776-0939</orcidid><orcidid>https://orcid.org/0000-0001-5432-5511</orcidid></search><sort><creationdate>20210101</creationdate><title>Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling</title><author>Brummer, Alexander B ; Lymperopoulos, Panagiotis ; Shen, Jocelyn ; Tekin, Elif ; Bentley, Lisa P ; Buzzard, Vanessa ; Gray, Andrew ; Oliveras, Imma ; Enquist, Brian J ; Savage, Van M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d619ed386eaa754ebb6b7299aa22ff2e988c430beda2361767ea38fad92fa9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Life Sciences–Physics interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brummer, Alexander B</creatorcontrib><creatorcontrib>Lymperopoulos, Panagiotis</creatorcontrib><creatorcontrib>Shen, Jocelyn</creatorcontrib><creatorcontrib>Tekin, Elif</creatorcontrib><creatorcontrib>Bentley, Lisa P</creatorcontrib><creatorcontrib>Buzzard, Vanessa</creatorcontrib><creatorcontrib>Gray, Andrew</creatorcontrib><creatorcontrib>Oliveras, Imma</creatorcontrib><creatorcontrib>Enquist, Brian J</creatorcontrib><creatorcontrib>Savage, Van M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brummer, Alexander B</au><au>Lymperopoulos, Panagiotis</au><au>Shen, Jocelyn</au><au>Tekin, Elif</au><au>Bentley, Lisa P</au><au>Buzzard, Vanessa</au><au>Gray, Andrew</au><au>Oliveras, Imma</au><au>Enquist, Brian J</au><au>Savage, Van M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>18</volume><issue>174</issue><spage>20200624</spage><epage>20200624</epage><pages>20200624-20200624</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks-mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii-which dictate essential biologic functions related to resource transport and supply-are best at distinguishing branching networks. We also show how variation in vascular and branching geometry persists despite observing a convergent relationship across organisms for how metabolic rate depends on body mass.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>33402023</pmid><doi>10.1098/rsif.2020.0624</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5345-2236</orcidid><orcidid>https://orcid.org/0000-0002-8776-0939</orcidid><orcidid>https://orcid.org/0000-0001-5432-5511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2021-01, Vol.18 (174), p.20200624-20200624 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7879751 |
source | PubMed Central |
subjects | Life Sciences–Physics interface |
title | Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20principles%20of%20animal%20and%20plant%20networks%20identified%20by%20combining%20extensive%20data,%20machine%20learning%20and%20modelling&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Brummer,%20Alexander%20B&rft.date=2021-01-01&rft.volume=18&rft.issue=174&rft.spage=20200624&rft.epage=20200624&rft.pages=20200624-20200624&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2020.0624&rft_dat=%3Cproquest_pubme%3E2475530862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475530862&rft_id=info:pmid/33402023&rfr_iscdi=true |