Spinal Anesthesia Reduces Myocardial Ischemia–triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs
Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympatheti...
Gespeichert in:
Veröffentlicht in: | Anesthesiology (Philadelphia) 2021-03, Vol.134 (3), p.405-420 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympathetic neurons that regulate sympathetic output is not known. The authors hypothesize that spinal bupivacaine reduces cardiac neuronal firing and network interactions in the dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus that produce sympathoexcitation during myocardial ischemia, attenuating ventricular arrhythmogenesis.
Extracellular neuronal signals from the dorsal horn and intermediolateral nucleus neurons were simultaneously recorded in Yorkshire pigs (n = 9) using a 64-channel high-density penetrating microarray electrode inserted at the T2 spinal cord. Dorsal horn and intermediolateral nucleus neural interactions and known markers of cardiac arrhythmogenesis were evaluated during myocardial ischemia and cardiac load-dependent perturbations with intrathecal bupivacaine.
Cardiac spinal neurons were identified based on their response to myocardial ischemia and cardiac load-dependent perturbations. Spinal bupivacaine did not change the basal activity of cardiac neurons in the dorsal horn or intermediolateral nucleus. After bupivacaine administration, the percentage of cardiac neurons that increased their activity in response to myocardial ischemia was decreased. Myocardial ischemia and cardiac load-dependent stress increased the short-term interactions between the dorsal horn and dorsal horn (324 to 931 correlated pairs out of 1,189 pairs, P < 0.0001), and dorsal horn and intermediolateral nucleus neurons (11 to 69 correlated pairs out of 1,135 pairs, P < 0.0001). Bupivacaine reduced this network response and augmentation in the interactions between dorsal horn-dorsal horn (931 to 38 correlated pairs out of 1,189 pairs, P < 0.0001) and intermediolateral nucleus-dorsal horn neurons (69 to 1 correlated pairs out of 1,135 pairs, P < 0.0001). Spinal bupivacaine reduced shortening of ventricular activation recovery interval and dispersion of repolarization, with decreased ventricular arrhythmogenesis during acute ischemia.
Spinal anesthesia reduces network interactions between dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus cardiac neurons in the spinal cord during myocardial ischemia. Blocking short-term coordination between local a |
---|---|
ISSN: | 0003-3022 1528-1175 |
DOI: | 10.1097/ALN.0000000000003662 |