A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis

Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome biology and evolution 2021-02, Vol.13 (2)
Hauptverfasser: Shoguchi, Eiichi, Beedessee, Girish, Hisata, Kanako, Tada, Ipputa, Narisoko, Haruhi, Satoh, Noriyuki, Kawachi, Masanobu, Shinzato, Chuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Genome biology and evolution
container_volume 13
creator Shoguchi, Eiichi
Beedessee, Girish
Hisata, Kanako
Tada, Ipputa
Narisoko, Haruhi
Satoh, Noriyuki
Kawachi, Masanobu
Shinzato, Chuya
description Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.
doi_str_mv 10.1093/gbe/evaa235
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gbe/evaa235</oup_id><sourcerecordid>2457677143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-a9a3ea5053b2c9810f5aa84f54125d36c908a7aa447857356c2ddacf060eac253</originalsourceid><addsrcrecordid>eNp9kUFPGzEQha2qqAToqffKp6pSFfCu1_bupRKkNERCcADO1sQ7G1x57dTeTcW_Z1dJo3DhNE8zn96M5hHyJWPnGav4xWqJF7gByLn4QCaZEtVUSsE_HuhjcpLSH8akLCT_RI45zwahigkxl_QO_9Ff1ofGwQqdgw7pHH1okS6c61vrh06iQGfBJ4wbrMcx0pnrU4eRLvwmuLFrPX3ofTIR0dMrG9KL754x2XRGjhpwCT_v6il5-n39OLuZ3t7PF7PL26kRed5NoQKOIJjgy9xUZcYaAVAWjSiyXNRcmoqVoACKQpVCcSFNXtdgGiYZgskFPyU_t77rftlibdB3EZxeR9tCfNEBrH478fZZr8JGq1IJxkaD7zuDGP72mDrd2mTGn3gMfdJ5IZRUKiv4gP7YoiaGlCI2-zUZ02MseohF72IZ6K-Hl-3Z_zkMwLctEPr1u06vdoiYoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457677143</pqid></control><display><type>article</type><title>A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shoguchi, Eiichi ; Beedessee, Girish ; Hisata, Kanako ; Tada, Ipputa ; Narisoko, Haruhi ; Satoh, Noriyuki ; Kawachi, Masanobu ; Shinzato, Chuya</creator><creatorcontrib>Shoguchi, Eiichi ; Beedessee, Girish ; Hisata, Kanako ; Tada, Ipputa ; Narisoko, Haruhi ; Satoh, Noriyuki ; Kawachi, Masanobu ; Shinzato, Chuya</creatorcontrib><description>Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.</description><identifier>ISSN: 1759-6653</identifier><identifier>EISSN: 1759-6653</identifier><identifier>DOI: 10.1093/gbe/evaa235</identifier><identifier>PMID: 33146374</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acids - biosynthesis ; Biosynthetic Pathways - genetics ; Dinoflagellida - genetics ; Genes ; Genome ; Genome Report ; Ultraviolet Rays</subject><ispartof>Genome biology and evolution, 2021-02, Vol.13 (2)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-a9a3ea5053b2c9810f5aa84f54125d36c908a7aa447857356c2ddacf060eac253</citedby><cites>FETCH-LOGICAL-c522t-a9a3ea5053b2c9810f5aa84f54125d36c908a7aa447857356c2ddacf060eac253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33146374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoguchi, Eiichi</creatorcontrib><creatorcontrib>Beedessee, Girish</creatorcontrib><creatorcontrib>Hisata, Kanako</creatorcontrib><creatorcontrib>Tada, Ipputa</creatorcontrib><creatorcontrib>Narisoko, Haruhi</creatorcontrib><creatorcontrib>Satoh, Noriyuki</creatorcontrib><creatorcontrib>Kawachi, Masanobu</creatorcontrib><creatorcontrib>Shinzato, Chuya</creatorcontrib><title>A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis</title><title>Genome biology and evolution</title><addtitle>Genome Biol Evol</addtitle><description>Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.</description><subject>Amino Acids - biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Dinoflagellida - genetics</subject><subject>Genes</subject><subject>Genome</subject><subject>Genome Report</subject><subject>Ultraviolet Rays</subject><issn>1759-6653</issn><issn>1759-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFPGzEQha2qqAToqffKp6pSFfCu1_bupRKkNERCcADO1sQ7G1x57dTeTcW_Z1dJo3DhNE8zn96M5hHyJWPnGav4xWqJF7gByLn4QCaZEtVUSsE_HuhjcpLSH8akLCT_RI45zwahigkxl_QO_9Ff1ofGwQqdgw7pHH1okS6c61vrh06iQGfBJ4wbrMcx0pnrU4eRLvwmuLFrPX3ofTIR0dMrG9KL754x2XRGjhpwCT_v6il5-n39OLuZ3t7PF7PL26kRed5NoQKOIJjgy9xUZcYaAVAWjSiyXNRcmoqVoACKQpVCcSFNXtdgGiYZgskFPyU_t77rftlibdB3EZxeR9tCfNEBrH478fZZr8JGq1IJxkaD7zuDGP72mDrd2mTGn3gMfdJ5IZRUKiv4gP7YoiaGlCI2-zUZ02MseohF72IZ6K-Hl-3Z_zkMwLctEPr1u06vdoiYoA</recordid><startdate>20210203</startdate><enddate>20210203</enddate><creator>Shoguchi, Eiichi</creator><creator>Beedessee, Girish</creator><creator>Hisata, Kanako</creator><creator>Tada, Ipputa</creator><creator>Narisoko, Haruhi</creator><creator>Satoh, Noriyuki</creator><creator>Kawachi, Masanobu</creator><creator>Shinzato, Chuya</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210203</creationdate><title>A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis</title><author>Shoguchi, Eiichi ; Beedessee, Girish ; Hisata, Kanako ; Tada, Ipputa ; Narisoko, Haruhi ; Satoh, Noriyuki ; Kawachi, Masanobu ; Shinzato, Chuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-a9a3ea5053b2c9810f5aa84f54125d36c908a7aa447857356c2ddacf060eac253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acids - biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Dinoflagellida - genetics</topic><topic>Genes</topic><topic>Genome</topic><topic>Genome Report</topic><topic>Ultraviolet Rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoguchi, Eiichi</creatorcontrib><creatorcontrib>Beedessee, Girish</creatorcontrib><creatorcontrib>Hisata, Kanako</creatorcontrib><creatorcontrib>Tada, Ipputa</creatorcontrib><creatorcontrib>Narisoko, Haruhi</creatorcontrib><creatorcontrib>Satoh, Noriyuki</creatorcontrib><creatorcontrib>Kawachi, Masanobu</creatorcontrib><creatorcontrib>Shinzato, Chuya</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoguchi, Eiichi</au><au>Beedessee, Girish</au><au>Hisata, Kanako</au><au>Tada, Ipputa</au><au>Narisoko, Haruhi</au><au>Satoh, Noriyuki</au><au>Kawachi, Masanobu</au><au>Shinzato, Chuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis</atitle><jtitle>Genome biology and evolution</jtitle><addtitle>Genome Biol Evol</addtitle><date>2021-02-03</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><issn>1759-6653</issn><eissn>1759-6653</eissn><abstract>Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose–methanol–choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33146374</pmid><doi>10.1093/gbe/evaa235</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-6653
ispartof Genome biology and evolution, 2021-02, Vol.13 (2)
issn 1759-6653
1759-6653
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875005
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino Acids - biosynthesis
Biosynthetic Pathways - genetics
Dinoflagellida - genetics
Genes
Genome
Genome Report
Ultraviolet Rays
title A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Dinoflagellate%20Genome%20Illuminates%20a%20Conserved%20Gene%20Cluster%20Involved%20in%20Sunscreen%20Biosynthesis&rft.jtitle=Genome%20biology%20and%20evolution&rft.au=Shoguchi,%20Eiichi&rft.date=2021-02-03&rft.volume=13&rft.issue=2&rft.issn=1759-6653&rft.eissn=1759-6653&rft_id=info:doi/10.1093/gbe/evaa235&rft_dat=%3Cproquest_pubme%3E2457677143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457677143&rft_id=info:pmid/33146374&rft_oup_id=10.1093/gbe/evaa235&rfr_iscdi=true