Optimization of Electronic Medical Records for Data Mining Using a Common Data Model

The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Scie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topics in companion animal medicine 2019-12, Vol.37, p.100364-100364, Article 100364
Hauptverfasser: Kwong, Manlik, Gardner, Heather L., Dieterle, Neil, Rentko, Virginia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100364
container_issue
container_start_page 100364
container_title Topics in companion animal medicine
container_volume 37
creator Kwong, Manlik
Gardner, Heather L.
Dieterle, Neil
Rentko, Virginia
description The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.
doi_str_mv 10.1016/j.tcam.2019.100364
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1938973619301011</els_id><sourcerecordid>2324867003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhqU0NB_tH-iiCN10Mzc6On5AKYSb9AMSAiVZi9c5pl5m9FbnBppfH4dJQ9tFNyqe57wcfRB6S8mKEipOt6vJ2XHVEqrrBWGCv0BHVHPRaMXky_nMVKMlE4fouJQtIYJopV6hQ0YrILvuCN1c76Ywhgc7hRRx8vhiADflFIPDV9AHZwf8HVzKfcE-ZXxuJ4uvQgzxDt-WebV4ncaxNi-l1MPwGh14OxR487SfoNvPFzfrr83l9Zdv67PLxnHFpsbTDQfgXnSy1a23rmWt7LRorSWO-lpzyrW9UlSD8lwq7p3eCNdT6tXGAjtBn5bc3X4zQu8gTtkOZpfDaPMvk2wwf1di-GHu0r2RSvKO0hrw4Skgp597KJMZQ3EwDDZC2hczD8QUJ6yr6Pt_0G3a51ifN1NcCVkNVKpdKJdTKRn88zCUmFma2ZpZmpmlmUVabXr35zOeW35bqsDHBYD6mfcBsikuQHTVT662TJ_C__IfAcaqqKU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324867003</pqid></control><display><type>article</type><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</creator><creatorcontrib>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</creatorcontrib><description>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</description><identifier>ISSN: 1938-9736</identifier><identifier>EISSN: 1946-9837</identifier><identifier>EISSN: 1876-7613</identifier><identifier>DOI: 10.1016/j.tcam.2019.100364</identifier><identifier>PMID: 31837755</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal diseases ; Animals ; Artificial intelligence ; COHA ; Collaboration ; Data Accuracy ; Data mining ; Data Mining - standards ; electronic health record ; Electronic health records ; Electronic Health Records - standards ; Electronic medical records ; Informatics ; infrastructure ; Medical records ; Medicine ; OMOP ; Optimization ; Patients ; veterinary ; Veterinary medicine ; Veterinary Medicine - methods</subject><ispartof>Topics in companion animal medicine, 2019-12, Vol.37, p.100364-100364, Article 100364</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</citedby><cites>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</cites><orcidid>0000-0001-6007-6144 ; 0000-0002-3434-9062 ; 0000-0002-5637-009X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcam.2019.100364$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31837755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwong, Manlik</creatorcontrib><creatorcontrib>Gardner, Heather L.</creatorcontrib><creatorcontrib>Dieterle, Neil</creatorcontrib><creatorcontrib>Rentko, Virginia</creatorcontrib><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><title>Topics in companion animal medicine</title><addtitle>Top Companion Anim Med</addtitle><description>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</description><subject>Animal diseases</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>COHA</subject><subject>Collaboration</subject><subject>Data Accuracy</subject><subject>Data mining</subject><subject>Data Mining - standards</subject><subject>electronic health record</subject><subject>Electronic health records</subject><subject>Electronic Health Records - standards</subject><subject>Electronic medical records</subject><subject>Informatics</subject><subject>infrastructure</subject><subject>Medical records</subject><subject>Medicine</subject><subject>OMOP</subject><subject>Optimization</subject><subject>Patients</subject><subject>veterinary</subject><subject>Veterinary medicine</subject><subject>Veterinary Medicine - methods</subject><issn>1938-9736</issn><issn>1946-9837</issn><issn>1876-7613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rHSEUhqU0NB_tH-iiCN10Mzc6On5AKYSb9AMSAiVZi9c5pl5m9FbnBppfH4dJQ9tFNyqe57wcfRB6S8mKEipOt6vJ2XHVEqrrBWGCv0BHVHPRaMXky_nMVKMlE4fouJQtIYJopV6hQ0YrILvuCN1c76Ywhgc7hRRx8vhiADflFIPDV9AHZwf8HVzKfcE-ZXxuJ4uvQgzxDt-WebV4ncaxNi-l1MPwGh14OxR487SfoNvPFzfrr83l9Zdv67PLxnHFpsbTDQfgXnSy1a23rmWt7LRorSWO-lpzyrW9UlSD8lwq7p3eCNdT6tXGAjtBn5bc3X4zQu8gTtkOZpfDaPMvk2wwf1di-GHu0r2RSvKO0hrw4Skgp597KJMZQ3EwDDZC2hczD8QUJ6yr6Pt_0G3a51ifN1NcCVkNVKpdKJdTKRn88zCUmFma2ZpZmpmlmUVabXr35zOeW35bqsDHBYD6mfcBsikuQHTVT662TJ_C__IfAcaqqKU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kwong, Manlik</creator><creator>Gardner, Heather L.</creator><creator>Dieterle, Neil</creator><creator>Rentko, Virginia</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6007-6144</orcidid><orcidid>https://orcid.org/0000-0002-3434-9062</orcidid><orcidid>https://orcid.org/0000-0002-5637-009X</orcidid></search><sort><creationdate>20191201</creationdate><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><author>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal diseases</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>COHA</topic><topic>Collaboration</topic><topic>Data Accuracy</topic><topic>Data mining</topic><topic>Data Mining - standards</topic><topic>electronic health record</topic><topic>Electronic health records</topic><topic>Electronic Health Records - standards</topic><topic>Electronic medical records</topic><topic>Informatics</topic><topic>infrastructure</topic><topic>Medical records</topic><topic>Medicine</topic><topic>OMOP</topic><topic>Optimization</topic><topic>Patients</topic><topic>veterinary</topic><topic>Veterinary medicine</topic><topic>Veterinary Medicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwong, Manlik</creatorcontrib><creatorcontrib>Gardner, Heather L.</creatorcontrib><creatorcontrib>Dieterle, Neil</creatorcontrib><creatorcontrib>Rentko, Virginia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Topics in companion animal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwong, Manlik</au><au>Gardner, Heather L.</au><au>Dieterle, Neil</au><au>Rentko, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</atitle><jtitle>Topics in companion animal medicine</jtitle><addtitle>Top Companion Anim Med</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>37</volume><spage>100364</spage><epage>100364</epage><pages>100364-100364</pages><artnum>100364</artnum><issn>1938-9736</issn><eissn>1946-9837</eissn><eissn>1876-7613</eissn><abstract>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31837755</pmid><doi>10.1016/j.tcam.2019.100364</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6007-6144</orcidid><orcidid>https://orcid.org/0000-0002-3434-9062</orcidid><orcidid>https://orcid.org/0000-0002-5637-009X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1938-9736
ispartof Topics in companion animal medicine, 2019-12, Vol.37, p.100364-100364, Article 100364
issn 1938-9736
1946-9837
1876-7613
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874511
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animal diseases
Animals
Artificial intelligence
COHA
Collaboration
Data Accuracy
Data mining
Data Mining - standards
electronic health record
Electronic health records
Electronic Health Records - standards
Electronic medical records
Informatics
infrastructure
Medical records
Medicine
OMOP
Optimization
Patients
veterinary
Veterinary medicine
Veterinary Medicine - methods
title Optimization of Electronic Medical Records for Data Mining Using a Common Data Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Electronic%20Medical%20Records%20for%20Data%20Mining%20Using%20a%20Common%20Data%20Model&rft.jtitle=Topics%20in%20companion%20animal%20medicine&rft.au=Kwong,%20Manlik&rft.date=2019-12-01&rft.volume=37&rft.spage=100364&rft.epage=100364&rft.pages=100364-100364&rft.artnum=100364&rft.issn=1938-9736&rft.eissn=1946-9837&rft_id=info:doi/10.1016/j.tcam.2019.100364&rft_dat=%3Cproquest_pubme%3E2324867003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324867003&rft_id=info:pmid/31837755&rft_els_id=S1938973619301011&rfr_iscdi=true