Optimization of Electronic Medical Records for Data Mining Using a Common Data Model
The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Scie...
Gespeichert in:
Veröffentlicht in: | Topics in companion animal medicine 2019-12, Vol.37, p.100364-100364, Article 100364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100364 |
---|---|
container_issue | |
container_start_page | 100364 |
container_title | Topics in companion animal medicine |
container_volume | 37 |
creator | Kwong, Manlik Gardner, Heather L. Dieterle, Neil Rentko, Virginia |
description | The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model. |
doi_str_mv | 10.1016/j.tcam.2019.100364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1938973619301011</els_id><sourcerecordid>2324867003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhqU0NB_tH-iiCN10Mzc6On5AKYSb9AMSAiVZi9c5pl5m9FbnBppfH4dJQ9tFNyqe57wcfRB6S8mKEipOt6vJ2XHVEqrrBWGCv0BHVHPRaMXky_nMVKMlE4fouJQtIYJopV6hQ0YrILvuCN1c76Ywhgc7hRRx8vhiADflFIPDV9AHZwf8HVzKfcE-ZXxuJ4uvQgzxDt-WebV4ncaxNi-l1MPwGh14OxR487SfoNvPFzfrr83l9Zdv67PLxnHFpsbTDQfgXnSy1a23rmWt7LRorSWO-lpzyrW9UlSD8lwq7p3eCNdT6tXGAjtBn5bc3X4zQu8gTtkOZpfDaPMvk2wwf1di-GHu0r2RSvKO0hrw4Skgp597KJMZQ3EwDDZC2hczD8QUJ6yr6Pt_0G3a51ifN1NcCVkNVKpdKJdTKRn88zCUmFma2ZpZmpmlmUVabXr35zOeW35bqsDHBYD6mfcBsikuQHTVT662TJ_C__IfAcaqqKU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324867003</pqid></control><display><type>article</type><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</creator><creatorcontrib>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</creatorcontrib><description>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</description><identifier>ISSN: 1938-9736</identifier><identifier>EISSN: 1946-9837</identifier><identifier>EISSN: 1876-7613</identifier><identifier>DOI: 10.1016/j.tcam.2019.100364</identifier><identifier>PMID: 31837755</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal diseases ; Animals ; Artificial intelligence ; COHA ; Collaboration ; Data Accuracy ; Data mining ; Data Mining - standards ; electronic health record ; Electronic health records ; Electronic Health Records - standards ; Electronic medical records ; Informatics ; infrastructure ; Medical records ; Medicine ; OMOP ; Optimization ; Patients ; veterinary ; Veterinary medicine ; Veterinary Medicine - methods</subject><ispartof>Topics in companion animal medicine, 2019-12, Vol.37, p.100364-100364, Article 100364</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</citedby><cites>FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</cites><orcidid>0000-0001-6007-6144 ; 0000-0002-3434-9062 ; 0000-0002-5637-009X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcam.2019.100364$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31837755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwong, Manlik</creatorcontrib><creatorcontrib>Gardner, Heather L.</creatorcontrib><creatorcontrib>Dieterle, Neil</creatorcontrib><creatorcontrib>Rentko, Virginia</creatorcontrib><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><title>Topics in companion animal medicine</title><addtitle>Top Companion Anim Med</addtitle><description>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</description><subject>Animal diseases</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>COHA</subject><subject>Collaboration</subject><subject>Data Accuracy</subject><subject>Data mining</subject><subject>Data Mining - standards</subject><subject>electronic health record</subject><subject>Electronic health records</subject><subject>Electronic Health Records - standards</subject><subject>Electronic medical records</subject><subject>Informatics</subject><subject>infrastructure</subject><subject>Medical records</subject><subject>Medicine</subject><subject>OMOP</subject><subject>Optimization</subject><subject>Patients</subject><subject>veterinary</subject><subject>Veterinary medicine</subject><subject>Veterinary Medicine - methods</subject><issn>1938-9736</issn><issn>1946-9837</issn><issn>1876-7613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rHSEUhqU0NB_tH-iiCN10Mzc6On5AKYSb9AMSAiVZi9c5pl5m9FbnBppfH4dJQ9tFNyqe57wcfRB6S8mKEipOt6vJ2XHVEqrrBWGCv0BHVHPRaMXky_nMVKMlE4fouJQtIYJopV6hQ0YrILvuCN1c76Ywhgc7hRRx8vhiADflFIPDV9AHZwf8HVzKfcE-ZXxuJ4uvQgzxDt-WebV4ncaxNi-l1MPwGh14OxR487SfoNvPFzfrr83l9Zdv67PLxnHFpsbTDQfgXnSy1a23rmWt7LRorSWO-lpzyrW9UlSD8lwq7p3eCNdT6tXGAjtBn5bc3X4zQu8gTtkOZpfDaPMvk2wwf1di-GHu0r2RSvKO0hrw4Skgp597KJMZQ3EwDDZC2hczD8QUJ6yr6Pt_0G3a51ifN1NcCVkNVKpdKJdTKRn88zCUmFma2ZpZmpmlmUVabXr35zOeW35bqsDHBYD6mfcBsikuQHTVT662TJ_C__IfAcaqqKU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kwong, Manlik</creator><creator>Gardner, Heather L.</creator><creator>Dieterle, Neil</creator><creator>Rentko, Virginia</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6007-6144</orcidid><orcidid>https://orcid.org/0000-0002-3434-9062</orcidid><orcidid>https://orcid.org/0000-0002-5637-009X</orcidid></search><sort><creationdate>20191201</creationdate><title>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</title><author>Kwong, Manlik ; Gardner, Heather L. ; Dieterle, Neil ; Rentko, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f1b4ee4f657292fac23275962aa0c1f4eec8c2d8819e8f4784fc9b6cd11f8bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal diseases</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>COHA</topic><topic>Collaboration</topic><topic>Data Accuracy</topic><topic>Data mining</topic><topic>Data Mining - standards</topic><topic>electronic health record</topic><topic>Electronic health records</topic><topic>Electronic Health Records - standards</topic><topic>Electronic medical records</topic><topic>Informatics</topic><topic>infrastructure</topic><topic>Medical records</topic><topic>Medicine</topic><topic>OMOP</topic><topic>Optimization</topic><topic>Patients</topic><topic>veterinary</topic><topic>Veterinary medicine</topic><topic>Veterinary Medicine - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwong, Manlik</creatorcontrib><creatorcontrib>Gardner, Heather L.</creatorcontrib><creatorcontrib>Dieterle, Neil</creatorcontrib><creatorcontrib>Rentko, Virginia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Topics in companion animal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwong, Manlik</au><au>Gardner, Heather L.</au><au>Dieterle, Neil</au><au>Rentko, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Electronic Medical Records for Data Mining Using a Common Data Model</atitle><jtitle>Topics in companion animal medicine</jtitle><addtitle>Top Companion Anim Med</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>37</volume><spage>100364</spage><epage>100364</epage><pages>100364-100364</pages><artnum>100364</artnum><issn>1938-9736</issn><eissn>1946-9837</eissn><eissn>1876-7613</eissn><abstract>The increasing use of electronic health records (EHRs) in veterinary medicine creates an opportunity to utilize the high volume of electronic patient data for mining and data-driven analytics with the goal of improving patient care and outcomes. A central focus of the Clinical and Translational Science Award One Health Alliance (COHA) is to integrate efforts across multiple disciplines to better understand shared diseases in animals and people. The ability to combine veterinary and human medical data provides a unique resource to study the interactions and relationships between animals, humans, and the environment. However, to effectively answer these questions, veterinary EHR data must first be prepared in the same way it is now commonly being done in human medicine to enable data mining and development of analytics to facilitate knowledge formation and solutions that advance our understanding of disease processes, with the ultimate goal of improving outcomes for veterinary patients and their owners. As a first step, COHA member institutions implemented a Common Data Model to standardize EHR data. Herein we present the approach executed within the COHA framework to prepare and optimize veterinary EHRs for data mining and knowledge formation based on the adoption of the Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31837755</pmid><doi>10.1016/j.tcam.2019.100364</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6007-6144</orcidid><orcidid>https://orcid.org/0000-0002-3434-9062</orcidid><orcidid>https://orcid.org/0000-0002-5637-009X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1938-9736 |
ispartof | Topics in companion animal medicine, 2019-12, Vol.37, p.100364-100364, Article 100364 |
issn | 1938-9736 1946-9837 1876-7613 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874511 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animal diseases Animals Artificial intelligence COHA Collaboration Data Accuracy Data mining Data Mining - standards electronic health record Electronic health records Electronic Health Records - standards Electronic medical records Informatics infrastructure Medical records Medicine OMOP Optimization Patients veterinary Veterinary medicine Veterinary Medicine - methods |
title | Optimization of Electronic Medical Records for Data Mining Using a Common Data Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Electronic%20Medical%20Records%20for%20Data%20Mining%20Using%20a%20Common%20Data%20Model&rft.jtitle=Topics%20in%20companion%20animal%20medicine&rft.au=Kwong,%20Manlik&rft.date=2019-12-01&rft.volume=37&rft.spage=100364&rft.epage=100364&rft.pages=100364-100364&rft.artnum=100364&rft.issn=1938-9736&rft.eissn=1946-9837&rft_id=info:doi/10.1016/j.tcam.2019.100364&rft_dat=%3Cproquest_pubme%3E2324867003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324867003&rft_id=info:pmid/31837755&rft_els_id=S1938973619301011&rfr_iscdi=true |