Automated age estimation of young individuals based on 3D knee MRI using deep learning
Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using...
Gespeichert in:
Veröffentlicht in: | International journal of legal medicine 2021-03, Vol.135 (2), p.649-663 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 2 |
container_start_page | 649 |
container_title | International journal of legal medicine |
container_volume | 135 |
creator | Mauer, Markus Auf der Well, Eilin Jopp-van Herrmann, Jochen Groth, Michael Morlock, Michael M. Maas, Rainer Säring, Dennis |
description | Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects. However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21 years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit) using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more diverse datasets. |
doi_str_mv | 10.1007/s00414-020-02465-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470899473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-fa41159f9584090737c12d9a26852378fa4cb9835c625bcb190e3e5b89a2d7623</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhoO06NX6B1yUQDfdTJvvj01BrLaCRZC225CZydxG5ya3yYygv96j11rbhYGQHM5z3uTlReiAkg-UEP2xEiKoaAgjsIWSze0WWlDBdUOlVa_Qgli4W8P0Dtqt9ZIQqpWW22iHw6LWygX6eThPeeWn0GO_DDjUKUIVc8J5wDd5TkscUx-vYz_7seLWVyChyz_jqxQC_nZxiucaAetDWOMx-JKgeoNeD8CH_cdzD_04Of5-9LU5O_9yenR41nRSkKkZvKDw18FKI4glmuuOst56poxkXBvod601XHaKybZrqSWBB9kaQHqtGN9Dnza667ldhb4LaSp-dOsCLsqNyz66fzsp_nLLfO200QTmQeD9o0DJv2ew71axdmEcfQp5ro4JTYy1Qt-j7_5DL_NcEtgDymiqqNIKKLahupJrLWF4-gwl7j42t4nNQWzuITZ3C0Nvn9t4GvmTEwB8A1RopWUof99-QfYO7bmiwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487161676</pqid></control><display><type>article</type><title>Automated age estimation of young individuals based on 3D knee MRI using deep learning</title><source>Springer Nature - Complete Springer Journals</source><source>HeinOnline Law Journal Library</source><creator>Mauer, Markus Auf der ; Well, Eilin Jopp-van ; Herrmann, Jochen ; Groth, Michael ; Morlock, Michael M. ; Maas, Rainer ; Säring, Dennis</creator><creatorcontrib>Mauer, Markus Auf der ; Well, Eilin Jopp-van ; Herrmann, Jochen ; Groth, Michael ; Morlock, Michael M. ; Maas, Rainer ; Säring, Dennis</creatorcontrib><description>Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects. However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21 years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit) using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more diverse datasets.</description><identifier>ISSN: 0937-9827</identifier><identifier>EISSN: 1437-1596</identifier><identifier>DOI: 10.1007/s00414-020-02465-z</identifier><identifier>PMID: 33331995</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Age ; Algorithms ; Artificial neural networks ; Automation ; Bones ; Chronology ; Datasets ; Deep learning ; Forensic Medicine ; Image segmentation ; Knee ; Machine learning ; Magnetic resonance imaging ; Medical Law ; Medicine ; Medicine & Public Health ; Neural networks ; Original ; Original Article ; Radiation effects</subject><ispartof>International journal of legal medicine, 2021-03, Vol.135 (2), p.649-663</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-fa41159f9584090737c12d9a26852378fa4cb9835c625bcb190e3e5b89a2d7623</citedby><cites>FETCH-LOGICAL-c540t-fa41159f9584090737c12d9a26852378fa4cb9835c625bcb190e3e5b89a2d7623</cites><orcidid>0000-0002-5589-3681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00414-020-02465-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00414-020-02465-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mauer, Markus Auf der</creatorcontrib><creatorcontrib>Well, Eilin Jopp-van</creatorcontrib><creatorcontrib>Herrmann, Jochen</creatorcontrib><creatorcontrib>Groth, Michael</creatorcontrib><creatorcontrib>Morlock, Michael M.</creatorcontrib><creatorcontrib>Maas, Rainer</creatorcontrib><creatorcontrib>Säring, Dennis</creatorcontrib><title>Automated age estimation of young individuals based on 3D knee MRI using deep learning</title><title>International journal of legal medicine</title><addtitle>Int J Legal Med</addtitle><addtitle>Int J Legal Med</addtitle><description>Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects. However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21 years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit) using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more diverse datasets.</description><subject>Age</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Bones</subject><subject>Chronology</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Forensic Medicine</subject><subject>Image segmentation</subject><subject>Knee</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical Law</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Original</subject><subject>Original Article</subject><subject>Radiation effects</subject><issn>0937-9827</issn><issn>1437-1596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LHTEUhoO06NX6B1yUQDfdTJvvj01BrLaCRZC225CZydxG5ya3yYygv96j11rbhYGQHM5z3uTlReiAkg-UEP2xEiKoaAgjsIWSze0WWlDBdUOlVa_Qgli4W8P0Dtqt9ZIQqpWW22iHw6LWygX6eThPeeWn0GO_DDjUKUIVc8J5wDd5TkscUx-vYz_7seLWVyChyz_jqxQC_nZxiucaAetDWOMx-JKgeoNeD8CH_cdzD_04Of5-9LU5O_9yenR41nRSkKkZvKDw18FKI4glmuuOst56poxkXBvod601XHaKybZrqSWBB9kaQHqtGN9Dnza667ldhb4LaSp-dOsCLsqNyz66fzsp_nLLfO200QTmQeD9o0DJv2ew71axdmEcfQp5ro4JTYy1Qt-j7_5DL_NcEtgDymiqqNIKKLahupJrLWF4-gwl7j42t4nNQWzuITZ3C0Nvn9t4GvmTEwB8A1RopWUof99-QfYO7bmiwg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mauer, Markus Auf der</creator><creator>Well, Eilin Jopp-van</creator><creator>Herrmann, Jochen</creator><creator>Groth, Michael</creator><creator>Morlock, Michael M.</creator><creator>Maas, Rainer</creator><creator>Säring, Dennis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AM</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BGRYB</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K7.</scope><scope>K9.</scope><scope>L6V</scope><scope>M0O</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5589-3681</orcidid></search><sort><creationdate>20210301</creationdate><title>Automated age estimation of young individuals based on 3D knee MRI using deep learning</title><author>Mauer, Markus Auf der ; Well, Eilin Jopp-van ; Herrmann, Jochen ; Groth, Michael ; Morlock, Michael M. ; Maas, Rainer ; Säring, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-fa41159f9584090737c12d9a26852378fa4cb9835c625bcb190e3e5b89a2d7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Bones</topic><topic>Chronology</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Forensic Medicine</topic><topic>Image segmentation</topic><topic>Knee</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical Law</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Original</topic><topic>Original Article</topic><topic>Radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauer, Markus Auf der</creatorcontrib><creatorcontrib>Well, Eilin Jopp-van</creatorcontrib><creatorcontrib>Herrmann, Jochen</creatorcontrib><creatorcontrib>Groth, Michael</creatorcontrib><creatorcontrib>Morlock, Michael M.</creatorcontrib><creatorcontrib>Maas, Rainer</creatorcontrib><creatorcontrib>Säring, Dennis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Criminal Justice Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Criminology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Criminal Justice</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of legal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauer, Markus Auf der</au><au>Well, Eilin Jopp-van</au><au>Herrmann, Jochen</au><au>Groth, Michael</au><au>Morlock, Michael M.</au><au>Maas, Rainer</au><au>Säring, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated age estimation of young individuals based on 3D knee MRI using deep learning</atitle><jtitle>International journal of legal medicine</jtitle><stitle>Int J Legal Med</stitle><addtitle>Int J Legal Med</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>135</volume><issue>2</issue><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>0937-9827</issn><eissn>1437-1596</eissn><abstract>Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects. However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21 years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit) using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more diverse datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33331995</pmid><doi>10.1007/s00414-020-02465-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5589-3681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9827 |
ispartof | International journal of legal medicine, 2021-03, Vol.135 (2), p.649-663 |
issn | 0937-9827 1437-1596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7870623 |
source | Springer Nature - Complete Springer Journals; HeinOnline Law Journal Library |
subjects | Age Algorithms Artificial neural networks Automation Bones Chronology Datasets Deep learning Forensic Medicine Image segmentation Knee Machine learning Magnetic resonance imaging Medical Law Medicine Medicine & Public Health Neural networks Original Original Article Radiation effects |
title | Automated age estimation of young individuals based on 3D knee MRI using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20age%20estimation%20of%20young%20individuals%20based%20on%203D%20knee%20MRI%20using%20deep%20learning&rft.jtitle=International%20journal%20of%20legal%20medicine&rft.au=Mauer,%20Markus%20Auf%20der&rft.date=2021-03-01&rft.volume=135&rft.issue=2&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=0937-9827&rft.eissn=1437-1596&rft_id=info:doi/10.1007/s00414-020-02465-z&rft_dat=%3Cproquest_pubme%3E2470899473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487161676&rft_id=info:pmid/33331995&rfr_iscdi=true |